Menu Close

1-Find-the-sum-s-n-1-2x-3x-2-4x-3-nx-n-1-Hence-or-otherwise-find-the-sum-k-1-n-k-2-k-2-Simplify-the-following-i-r-0-n-2r-1-2n-ii-r-0-n-1-r-r-r-n-i




Question Number 37991 by Fawomath last updated on 20/Jun/18
1. Find the sum      s_n =1+2x+3x^2 +4x^3 +...+nx^(n−1)   Hence,or otherwise, find the sum      Σ_(k=1) ^n k.2^k   2. Simplify the following  i. Σ_(r=0) ^n (_(2r−1) ^(2n) )  ii.Σ_(r=0) ^n (−1)^r r(_r ^n )  iii.Σ_(r=0) ^n (−1)^r (1/(r+1))(_r ^n )  iv.Σ_(r=0) ^n (_(2r) ^(2n) )  v.Σ_(r=0) ^n (−1)^r (_(n−r) ^(n+1) )  3.Find the sum           Σ_(r=0) ^(n−k) (_k ^(n−r) ),   where k=0,1,2,3,...,n
1.Findthesumsn=1+2x+3x2+4x3++nxn1Hence,orotherwise,findthesumnk=1k.2k2.Simplifythefollowingi.nr=0(2r12n)ii.nr=0(1)rr(rn)iii.nr=0(1)r1r+1(rn)iv.nr=0(2r2n)v.nr=0(1)r(nrn+1)3.Findthesumnkr=0(knr),wherek=0,1,2,3,,n
Commented by prof Abdo imad last updated on 21/Jun/18
1) let f(x)= 1+x +x^2  +...+x^n  =Σ_(k=0) ^n  x^k   ⇒f^′ (x)=Σ_(k=1) ^n  k x^(k−1)    but if x≠1  f(x)= ((x^(n+1)  −1)/(x−1)) ⇒f^′ (x)=((nx^(n+1) −(n+1)x^(n +1)  +1)/((x−1)^2 ))  so Σ_(k=1) ^n  kx^(k−1)  =((nx^(n+1) −(n+1)x^n  +1)/((x−1)^2 ))   if x =1   f^′ (x)= 1+2+3+...+n   ⇒f^′ (x)= ((n(n+1))/2)   let take x=2 ⇒Σ_(k=1) ^n k.2^(k−1) =n 2^(n+1) −(n+1)2^n  +1   Σ_(k=1) ^n  k .2^k  =n 2^(n+2)  −(n+1)2^(n+1)  +2 .  =4n 2^n −(2n+2)2^n  +2=(2n−2)2^n  +2  =(n−1)2^(n+1)  +2.
1)letf(x)=1+x+x2++xn=k=0nxkf(x)=k=1nkxk1butifx1f(x)=xn+11x1f(x)=nxn+1(n+1)xn+1+1(x1)2sok=1nkxk1=nxn+1(n+1)xn+1(x1)2ifx=1f(x)=1+2+3++nf(x)=n(n+1)2lettakex=2k=1nk.2k1=n2n+1(n+1)2n+1k=1nk.2k=n2n+2(n+1)2n+1+2.=4n2n(2n+2)2n+2=(2n2)2n+2=(n1)2n+1+2.
Commented by prof Abdo imad last updated on 21/Jun/18
2)ii let p(x)=Σ_(k=0) ^n  C_n ^k   x^k   we have  p(x)=(x+1)^n  ⇒ Σ_(k=0) ^n (−1)^k  C_n ^k =p(−1)=0
2)iiletp(x)=k=0nCnkxkwehavep(x)=(x+1)nk=0n(1)kCnk=p(1)=0
Commented by prof Abdo imad last updated on 21/Jun/18
iii let  p(x)= Σ_(k=0) ^n   C_n ^k  x^k   =(x+1)^n  ⇒  ∫ p(x)dx =Σ_(k=0) ^n  (1/(k+1)) C_n ^k  x^(k+1) +c   =(1/(n+1))(x+1)^(n+1)  +c  x=0 ⇒c=−(1/(n+1)) ⇒  Σ_(k=0) ^n   (x^(k+1) /(k+1)) C_n ^k  = (((x+1)^(n+1)  −1)/(n+1)) let take x=−1 ⇒    −Σ_(k=0) ^n  (((−1)^k )/(k+1)) C_n ^k   =(((x+1)^(n+1)  −1)/(n+1)) ⇒  Σ_(k=0) ^n  (((−1)^k )/(k+1)) C_n ^k    = ((1−(x+1)^(n+1) )/(n+1)) .
iiiletp(x)=k=0nCnkxk=(x+1)np(x)dx=k=0n1k+1Cnkxk+1+c=1n+1(x+1)n+1+cx=0c=1n+1k=0nxk+1k+1Cnk=(x+1)n+11n+1lettakex=1k=0n(1)kk+1Cnk=(x+1)n+11n+1k=0n(1)kk+1Cnk=1(x+1)n+1n+1.
Commented by prof Abdo imad last updated on 21/Jun/18
⇒ Σ_(k=0) ^n  (((−1)^k )/(k+1)) C_n ^k   = (1/(n+1)) .
k=0n(1)kk+1Cnk=1n+1.
Answered by ajfour last updated on 20/Jun/18
s_n =1+2x+3x^2 +4x^3 +....+nx^(n−1)   xs_n =     [x+2x^2 +3x^3 +....+(n−1)x^(n−1) +nx^n   (1−x)s_n =1+x+x^2 +...+x^(n−1) −nx^n   s_n =((1−x^n )/((1−x)^2 ))−((nx^n )/(1−x)) .
sn=1+2x+3x2+4x3+.+nxn1xsn=[x+2x2+3x3+.+(n1)xn1+nxn(1x)sn=1+x+x2++xn1nxnsn=1xn(1x)2nxn1x.

Leave a Reply

Your email address will not be published. Required fields are marked *