Menu Close

1-find-the-value-of-0-1-ln-1-x-3-dx-then-find-the-value-of-0-1-ln-1-x-x-2-dx-2-find-the-value-of-0-1-ln-1-x-3-dx-then-calculate-0-1-ln-1-x-x-2-dx-




Question Number 36689 by prof Abdo imad last updated on 04/Jun/18
1) find the value of ∫_0 ^1 ln(1−x^3 )dx then  find the value of ∫_0 ^1 ln(1+x+x^2 )dx  2)find the value of ∫_0 ^1 ln(1+x^3 )dx then   calculate ∫_0 ^1  ln(1−x +x^2 )dx
1)findthevalueof01ln(1x3)dxthenfindthevalueof01ln(1+x+x2)dx2)findthevalueof01ln(1+x3)dxthencalculate01ln(1x+x2)dx
Commented by maxmathsup by imad last updated on 04/Aug/18
1) let A = ∫_0 ^1 ln(1−x^3 )dx  we have ln^′ (1−u)^  =−(1/(1−u)) =−Σ_(n=0) ^∞ u^n   with ∣u∣<1 ⇒ ln(1−u) =−Σ_(n=0) ^∞  (u^(n+1) /(n+1)) =−Σ_(n=1) ^∞  (u^n /n) ⇒  A = −∫_0 ^1 (Σ_(n=1) ^∞  (x^(3n) /n) )dx =−Σ_(n=1) ^∞  (1/n) ∫_0 ^1  x^(3n) dx =−Σ_(n=1) ^∞   (1/(n(3n+1))) ⇒  −(A/3) =Σ_(n=1) ^∞   (1/(3n(3n+1))) =Σ_(n=1) ^∞   ((1/(3n))−(1/(3n+1))) let   S_n =Σ_(k=1) ^n  ((1/(3k)) −(1/(3k+1))) ⇒ S_n =(1/3)H_n  −Σ_(k=1) ^n   (1/(3k+1))  but  Σ_(k=1) ^n   (1/(3k+1))?     we have Σ_(k=1) ^n  (1/k) = Σ_(k=3p) (1/k) +Σ_(k=3p+1) (1/k) +Σ_(k=3p+2)  (1/k)  =Σ_(p=1) ^([(n/3)])  (1/(3p))  +Σ_(p=0) ^([((n−1)/3)])   (1/(3p+1)) + Σ_(p=0) ^([((n−2)/3)])   (1/(3p+2))  but  Σ_(p=0) ^([((n−2)/3)])  (1/(3p+2)) =_(p=j−1)    Σ_(j=1) ^([((n−2)/3)]−1)     (1/(3j−1)) ⇒  Σ_(p=0) ^([((n−1)/3)])   (1/(3p+1)) +Σ_(p=1) ^([((n−5)/3)])   (1/(3p−1)) = H_n −(1/3) H_([(n/3)])    ...be continued...
1)letA=01ln(1x3)dxwehaveln(1u)=11u=n=0unwithu∣<1ln(1u)=n=0un+1n+1=n=1unnA=01(n=1x3nn)dx=n=11n01x3ndx=n=11n(3n+1)A3=n=113n(3n+1)=n=1(13n13n+1)letSn=k=1n(13k13k+1)Sn=13Hnk=1n13k+1butk=1n13k+1?wehavek=1n1k=k=3p1k+k=3p+11k+k=3p+21k=p=1[n3]13p+p=0[n13]13p+1+p=0[n23]13p+2butp=0[n23]13p+2=p=j1j=1[n23]113j1p=0[n13]13p+1+p=1[n53]13p1=Hn13H[n3]becontinued

Leave a Reply

Your email address will not be published. Required fields are marked *