Menu Close

1-find-the-value-of-f-x-0-1-cos-xt-t-2-e-t-dt-2-calculate-0-1-cos-t-t-2-e-t-dt-




Question Number 35630 by abdo mathsup 649 cc last updated on 21/May/18
1) find the value of f(x)=∫_0 ^∞  ((1−cos(xt))/t^2 ) e^(−t) dt  2) calculate  ∫_0 ^∞    ((1−cos(t))/t^2 ) e^(−t)  dt .
1)findthevalueoff(x)=01cos(xt)t2etdt2)calculate01cos(t)t2etdt.
Commented by abdo mathsup 649 cc last updated on 24/May/18
by parts  u^′  = (1/t^2 )  and v =(1−cos(xt))e^(−t)   ⇒  v^′  = xsin(xt) e^(−t)  −(1−cos(xt))e^(−t)   =( x sin(xt) +cos(xt)−1) e^(−t)   f(x) = [ −(1/t) (1−cos(xt))e^(−t) ]_0 ^(+∞)   −∫_0 ^∞    ((−1)/t) ( xsin(xt) +cos(xt) −1)e^(−t)  dt but  1−cos(xt) ∼ ((x^2 t^2 )/2) ⇒ ((1−cos(xt))/t)  ∼  ((tx^2 )/2) ⇒  lim_(t→0)  (((1−cos(xt))e^(−t) )/t) =0 ⇒  f(x) =  x ∫_0 ^∞    ((sin(xt))/t) e^(−t)  dt  +∫_0 ^∞  ((1−cos(xt))/t) e^(−t) dt  let calculate h(x)= ∫_0 ^∞     ((sin(xt))/t) e^(−t)  dt   h^′ (x) = ∫_0 ^∞     cos(xt) e^(−t)  dt =Re(∫_0 ^∞  e^(ixt−t) dt)  ∫_0 ^∞    e^((−1 +ix)t) dt = [ (1/(−1+ix)) e^((−1+ix)t) ]_0 ^(+∞)   = (1/(−1+ix)) = ((−1)/(1−ix)) = ((−1−ix)/(1+x^2 )) ⇒ h^′ (x) = ((−1)/(1+x^2 ))  ⇒ h(x) =λ −arctan(x)  but λ =h(0)=0 ⇒  h(x) =−arctan(x)
bypartsu=1t2andv=(1cos(xt))etv=xsin(xt)et(1cos(xt))et=(xsin(xt)+cos(xt)1)etf(x)=[1t(1cos(xt))et]0+01t(xsin(xt)+cos(xt)1)etdtbut1cos(xt)x2t221cos(xt)ttx22limt0(1cos(xt))ett=0f(x)=x0sin(xt)tetdt+01cos(xt)tetdtletcalculateh(x)=0sin(xt)tetdth(x)=0cos(xt)etdt=Re(0eixttdt)0e(1+ix)tdt=[11+ixe(1+ix)t]0+=11+ix=11ix=1ix1+x2h(x)=11+x2h(x)=λarctan(x)butλ=h(0)=0h(x)=arctan(x)
Commented by abdo mathsup 649 cc last updated on 24/May/18
let calculate K(x) = ∫_0 ^∞   ((1 −cos(xt))/t) e^(−t) dt  K^′ (x) = ∫_0 ^∞   sin(xt) e^(−t) dt =Im( ∫_0 ^∞  e^(ixt −t) dt)  = Im( ∫_0 ^∞   e^((−1+ix)t) dt) = ((−x)/(1+x^2 )) ⇒  K(x)= λ −(1/2)ln(1+x^2 )  but  λ =K(0)=0 ⇒  K(x) = −(1/2)ln(1+x^2 ) ⇒  f(x) = −x arctan(x) −(1/2)ln(1+x^2 )
letcalculateK(x)=01cos(xt)tetdtK(x)=0sin(xt)etdt=Im(0eixttdt)=Im(0e(1+ix)tdt)=x1+x2K(x)=λ12ln(1+x2)butλ=K(0)=0K(x)=12ln(1+x2)f(x)=xarctan(x)12ln(1+x2)
Commented by abdo mathsup 649 cc last updated on 24/May/18
error in the final line   f(x)= −x arctan(x) +(1/2)ln(1+x^2 ).
errorinthefinallinef(x)=xarctan(x)+12ln(1+x2).
Commented by abdo mathsup 649 cc last updated on 24/May/18
2) we have proved that   ∫_0 ^∞     ((1−cos(xt))/t^2 ) e^(−t)  dt =(1/2)ln(1+x^2 ) −x arctan(x)  let take x=1 ⇒  ∫_0 ^∞     ((1−cos(t))/t^2 ) e^(−t) = (1/2)ln(2) −(π/4) .
2)wehaveprovedthat01cos(xt)t2etdt=12ln(1+x2)xarctan(x)lettakex=101cos(t)t2et=12ln(2)π4.
Commented by abdo mathsup 649 cc last updated on 24/May/18
error in line 8  f(x)= x ∫_0 ^∞   ((sin(xt))/t) e^(−t)  dt −∫_0 ^∞  ((1−cos(xt))/t)e^(−t)  dt
errorinline8f(x)=x0sin(xt)tetdt01cos(xt)tetdt

Leave a Reply

Your email address will not be published. Required fields are marked *