Menu Close

1-find-the-value-of-f-x-0-1-cos-xt-t-2-e-t-dt-2-calculate-0-1-cos-t-t-2-e-t-dt-




Question Number 35630 by abdo mathsup 649 cc last updated on 21/May/18
1) find the value of f(x)=∫_0 ^∞  ((1−cos(xt))/t^2 ) e^(−t) dt  2) calculate  ∫_0 ^∞    ((1−cos(t))/t^2 ) e^(−t)  dt .
$$\left.\mathrm{1}\right)\:{find}\:{the}\:{value}\:{of}\:{f}\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}−{cos}\left({xt}\right)}{{t}^{\mathrm{2}} }\:{e}^{−{t}} {dt} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{1}−{cos}\left({t}\right)}{{t}^{\mathrm{2}} }\:{e}^{−{t}} \:{dt}\:. \\ $$
Commented by abdo mathsup 649 cc last updated on 24/May/18
by parts  u^′  = (1/t^2 )  and v =(1−cos(xt))e^(−t)   ⇒  v^′  = xsin(xt) e^(−t)  −(1−cos(xt))e^(−t)   =( x sin(xt) +cos(xt)−1) e^(−t)   f(x) = [ −(1/t) (1−cos(xt))e^(−t) ]_0 ^(+∞)   −∫_0 ^∞    ((−1)/t) ( xsin(xt) +cos(xt) −1)e^(−t)  dt but  1−cos(xt) ∼ ((x^2 t^2 )/2) ⇒ ((1−cos(xt))/t)  ∼  ((tx^2 )/2) ⇒  lim_(t→0)  (((1−cos(xt))e^(−t) )/t) =0 ⇒  f(x) =  x ∫_0 ^∞    ((sin(xt))/t) e^(−t)  dt  +∫_0 ^∞  ((1−cos(xt))/t) e^(−t) dt  let calculate h(x)= ∫_0 ^∞     ((sin(xt))/t) e^(−t)  dt   h^′ (x) = ∫_0 ^∞     cos(xt) e^(−t)  dt =Re(∫_0 ^∞  e^(ixt−t) dt)  ∫_0 ^∞    e^((−1 +ix)t) dt = [ (1/(−1+ix)) e^((−1+ix)t) ]_0 ^(+∞)   = (1/(−1+ix)) = ((−1)/(1−ix)) = ((−1−ix)/(1+x^2 )) ⇒ h^′ (x) = ((−1)/(1+x^2 ))  ⇒ h(x) =λ −arctan(x)  but λ =h(0)=0 ⇒  h(x) =−arctan(x)
$${by}\:{parts}\:\:{u}^{'} \:=\:\frac{\mathrm{1}}{{t}^{\mathrm{2}} }\:\:{and}\:{v}\:=\left(\mathrm{1}−{cos}\left({xt}\right)\right){e}^{−{t}} \:\:\Rightarrow \\ $$$${v}^{'} \:=\:{xsin}\left({xt}\right)\:{e}^{−{t}} \:−\left(\mathrm{1}−{cos}\left({xt}\right)\right){e}^{−{t}} \\ $$$$=\left(\:{x}\:{sin}\left({xt}\right)\:+{cos}\left({xt}\right)−\mathrm{1}\right)\:{e}^{−{t}} \\ $$$${f}\left({x}\right)\:=\:\left[\:−\frac{\mathrm{1}}{{t}}\:\left(\mathrm{1}−{cos}\left({xt}\right)\right){e}^{−{t}} \right]_{\mathrm{0}} ^{+\infty} \\ $$$$−\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{−\mathrm{1}}{{t}}\:\left(\:{xsin}\left({xt}\right)\:+{cos}\left({xt}\right)\:−\mathrm{1}\right){e}^{−{t}} \:{dt}\:{but} \\ $$$$\mathrm{1}−{cos}\left({xt}\right)\:\sim\:\frac{{x}^{\mathrm{2}} {t}^{\mathrm{2}} }{\mathrm{2}}\:\Rightarrow\:\frac{\mathrm{1}−{cos}\left({xt}\right)}{{t}}\:\:\sim\:\:\frac{{tx}^{\mathrm{2}} }{\mathrm{2}}\:\Rightarrow \\ $$$${lim}_{{t}\rightarrow\mathrm{0}} \:\frac{\left(\mathrm{1}−{cos}\left({xt}\right)\right){e}^{−{t}} }{{t}}\:=\mathrm{0}\:\Rightarrow \\ $$$${f}\left({x}\right)\:=\:\:{x}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{sin}\left({xt}\right)}{{t}}\:{e}^{−{t}} \:{dt}\:\:+\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}−{cos}\left({xt}\right)}{{t}}\:{e}^{−{t}} {dt} \\ $$$${let}\:{calculate}\:{h}\left({x}\right)=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{sin}\left({xt}\right)}{{t}}\:{e}^{−{t}} \:{dt}\: \\ $$$${h}^{'} \left({x}\right)\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:{cos}\left({xt}\right)\:{e}^{−{t}} \:{dt}\:={Re}\left(\int_{\mathrm{0}} ^{\infty} \:{e}^{{ixt}−{t}} {dt}\right) \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\:{e}^{\left(−\mathrm{1}\:+{ix}\right){t}} {dt}\:=\:\left[\:\frac{\mathrm{1}}{−\mathrm{1}+{ix}}\:{e}^{\left(−\mathrm{1}+\boldsymbol{{ix}}\right){t}} \right]_{\mathrm{0}} ^{+\infty} \\ $$$$=\:\frac{\mathrm{1}}{−\mathrm{1}+{ix}}\:=\:\frac{−\mathrm{1}}{\mathrm{1}−{ix}}\:=\:\frac{−\mathrm{1}−{ix}}{\mathrm{1}+{x}^{\mathrm{2}} }\:\Rightarrow\:{h}^{'} \left({x}\right)\:=\:\frac{−\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$$$\Rightarrow\:{h}\left({x}\right)\:=\lambda\:−{arctan}\left({x}\right)\:\:{but}\:\lambda\:={h}\left(\mathrm{0}\right)=\mathrm{0}\:\Rightarrow \\ $$$${h}\left({x}\right)\:=−{arctan}\left({x}\right) \\ $$
Commented by abdo mathsup 649 cc last updated on 24/May/18
let calculate K(x) = ∫_0 ^∞   ((1 −cos(xt))/t) e^(−t) dt  K^′ (x) = ∫_0 ^∞   sin(xt) e^(−t) dt =Im( ∫_0 ^∞  e^(ixt −t) dt)  = Im( ∫_0 ^∞   e^((−1+ix)t) dt) = ((−x)/(1+x^2 )) ⇒  K(x)= λ −(1/2)ln(1+x^2 )  but  λ =K(0)=0 ⇒  K(x) = −(1/2)ln(1+x^2 ) ⇒  f(x) = −x arctan(x) −(1/2)ln(1+x^2 )
$${let}\:{calculate}\:{K}\left({x}\right)\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{1}\:−{cos}\left({xt}\right)}{{t}}\:{e}^{−{t}} {dt} \\ $$$${K}^{'} \left({x}\right)\:=\:\int_{\mathrm{0}} ^{\infty} \:\:{sin}\left({xt}\right)\:{e}^{−{t}} {dt}\:={Im}\left(\:\int_{\mathrm{0}} ^{\infty} \:{e}^{{ixt}\:−{t}} {dt}\right) \\ $$$$=\:{Im}\left(\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{\left(−\mathrm{1}+{ix}\right){t}} {dt}\right)\:=\:\frac{−{x}}{\mathrm{1}+{x}^{\mathrm{2}} }\:\Rightarrow \\ $$$${K}\left({x}\right)=\:\lambda\:−\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\:\:{but}\:\:\lambda\:={K}\left(\mathrm{0}\right)=\mathrm{0}\:\Rightarrow \\ $$$${K}\left({x}\right)\:=\:−\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\:\Rightarrow \\ $$$${f}\left({x}\right)\:=\:−{x}\:{arctan}\left({x}\right)\:−\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right) \\ $$
Commented by abdo mathsup 649 cc last updated on 24/May/18
error in the final line   f(x)= −x arctan(x) +(1/2)ln(1+x^2 ).
$${error}\:{in}\:{the}\:{final}\:{line}\: \\ $$$${f}\left({x}\right)=\:−{x}\:{arctan}\left({x}\right)\:+\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right). \\ $$
Commented by abdo mathsup 649 cc last updated on 24/May/18
2) we have proved that   ∫_0 ^∞     ((1−cos(xt))/t^2 ) e^(−t)  dt =(1/2)ln(1+x^2 ) −x arctan(x)  let take x=1 ⇒  ∫_0 ^∞     ((1−cos(t))/t^2 ) e^(−t) = (1/2)ln(2) −(π/4) .
$$\left.\mathrm{2}\right)\:{we}\:{have}\:{proved}\:{that}\: \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{\mathrm{1}−{cos}\left({xt}\right)}{{t}^{\mathrm{2}} }\:{e}^{−{t}} \:{dt}\:=\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\:−{x}\:{arctan}\left({x}\right) \\ $$$${let}\:{take}\:{x}=\mathrm{1}\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{\mathrm{1}−{cos}\left({t}\right)}{{t}^{\mathrm{2}} }\:{e}^{−{t}} =\:\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{2}\right)\:−\frac{\pi}{\mathrm{4}}\:. \\ $$
Commented by abdo mathsup 649 cc last updated on 24/May/18
error in line 8  f(x)= x ∫_0 ^∞   ((sin(xt))/t) e^(−t)  dt −∫_0 ^∞  ((1−cos(xt))/t)e^(−t)  dt
$${error}\:{in}\:{line}\:\mathrm{8} \\ $$$${f}\left({x}\right)=\:{x}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{sin}\left({xt}\right)}{{t}}\:{e}^{−{t}} \:{dt}\:−\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}−{cos}\left({xt}\right)}{{t}}{e}^{−{t}} \:{dt} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *