Question Number 31748 by abdo imad last updated on 13/Mar/18
$$\left.\mathrm{1}\right){find}\:{the}\:{value}\:{of}\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{{x}^{\mathrm{3}{n}} }{\left(\mathrm{3}{n}\right)!} \\ $$$$\left.\mathrm{2}\right)\:{find}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{8}^{{n}} }{\left(\mathrm{3}{n}\right)!}\:\:. \\ $$
Commented by rahul 19 last updated on 14/Mar/18
$$\left.{solution}\:{for}\:\mathrm{1}\right)\:{part}\:{plz}?? \\ $$$$\left.\mathrm{2}\right)\:{it}\:{can}\:{be}\:{done}\:{by}\:{putting}\:{x}=\mathrm{2}. \\ $$
Commented by abdo imad last updated on 16/Mar/18
$${let}\:{put}\:{f}\left({x}\right)=\:{e}^{{x}} \:+{e}^{{jx}} \:+{e}^{{j}^{\mathrm{2}} {x}} \:{we}\:{have} \\ $$$${f}\left({x}\right)=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{{x}^{{n}} }{{n}!}\:+\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{{j}^{{n}} \:{x}^{{n}} }{{n}!}\:+\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{{j}^{\mathrm{2}{n}} \:{x}^{{n}} }{{n}!}\:\:\:\left({j}={e}^{{i}\frac{\mathrm{2}\pi}{\mathrm{3}}} \right) \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \left(\mathrm{1}+{j}^{{n}} \:+{j}^{\mathrm{2}{n}} \right)\:\frac{{x}^{{n}} }{{n}!}\:\:{let}\:{study}\:{A}_{{n}} =\mathrm{1}+{j}^{{n}} \:+{j}^{\mathrm{2}{n}} \\ $$$${n}=\mathrm{3}{k}\:\Rightarrow\:{A}_{{n}} =\mathrm{1}+{j}^{\mathrm{3}{k}} \:+{j}^{\mathrm{6}{k}} \:=\mathrm{3}\:\: \\ $$$${n}=\mathrm{3}{k}+\mathrm{1}\:\Rightarrow\:{A}_{{n}} =\:\mathrm{1}+{j}^{\mathrm{3}{k}+\mathrm{1}} \:+{j}^{\mathrm{6}{k}+\mathrm{2}} \:=\mathrm{1}+{j}\:+{j}^{\mathrm{2}} =\mathrm{0} \\ $$$${n}=\mathrm{3}{k}+\mathrm{2}\:\Rightarrow\:{A}_{{n}} =\mathrm{1}+{j}^{\mathrm{3}{k}+\mathrm{2}} \:+{j}^{\mathrm{6}{k}+\mathrm{4}} \:=\mathrm{1}+{j}^{\mathrm{2}} \:+{j}=\mathrm{0}?{so} \\ $$$${f}\left({x}\right)\:=\mathrm{3}\sum_{{k}=\mathrm{0}} ^{\infty} \:\frac{{x}^{\mathrm{3}{k}} }{\left(\mathrm{3}{k}\right)!}\:\:\Rightarrow\:\sum_{{k}=\mathrm{0}} ^{\infty} \:\frac{{x}^{\mathrm{3}{k}} }{\left(\mathrm{3}{k}\right)!}\:=\frac{\mathrm{1}}{\mathrm{3}}\left(\:{e}^{{x}} \:+{e}^{{jx}} \:+{e}^{{j}^{\mathrm{2}} {x}} \right)\:. \\ $$$$\left.\mathrm{2}\right)\:{let}\:{take}\:{x}=\mathrm{2}\:{inside}\:{f}\left({x}\right)\:{we}\:{get} \\ $$$$\sum_{{k}=\mathrm{0}} ^{\infty} \:\frac{{x}^{\mathrm{3}{k}} }{\left(\mathrm{3}{k}\right)!}\:=\frac{\mathrm{1}}{\mathrm{3}}\left(\:{e}^{\mathrm{2}} \:\:+{e}^{\mathrm{2}{j}} \:+{e}^{\mathrm{2}{j}^{\mathrm{2}} } \right)\:\:{but} \\ $$$${e}^{\mathrm{2}{j}} ={e}^{\mathrm{2}\left(−\frac{\mathrm{1}}{\mathrm{2}}+{i}\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)} \:=\:{e}^{−\mathrm{1}} \left({cos}\left(\sqrt{\mathrm{3}}\right)+{isin}\left(\sqrt{\mathrm{3}}\right)\right) \\ $$$${e}^{\mathrm{2}{j}^{\mathrm{2}} } \:=\:{e}^{\mathrm{2}\left(−\frac{\mathrm{1}}{\mathrm{2}}−{i}\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)} =\:{e}^{−\mathrm{1}} \:\left({cos}\left(\sqrt{\mathrm{3}}\:\right)−{isin}\left(\sqrt{\mathrm{3}}\right)\right) \\ $$$$\sum_{{k}=\mathrm{0}} ^{\infty} \:\:\frac{{x}^{\mathrm{3}{k}} }{\left(\mathrm{3}{k}\right)!}\:\:=\frac{\mathrm{1}}{\mathrm{3}}\:\left(\:{e}^{\mathrm{2}} \:\:+\mathrm{2}{e}^{−\mathrm{1}} {cos}\left(\sqrt{\mathrm{3}}\right)\right)\:. \\ $$
Commented by abdo imad last updated on 16/Mar/18
$${we}\:{have}\:{e}^{{x}} \:+{e}^{{jx}} \:+{e}^{{j}^{\mathrm{2}} {x}} \:={e}^{{x}} \:+{e}^{{x}\left(−\frac{\mathrm{1}}{\mathrm{2}}+{i}\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)} \:\:+{e}^{{x}\left(−\frac{\mathrm{1}}{\mathrm{2}}−{i}\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)} \\ $$$$=\:{e}^{{x}} \:\:+\:{e}^{−\frac{{x}}{\mathrm{2}}} \left({cos}\left({x}\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)\:+{isin}\left({x}\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)\right)\:+{e}^{−\frac{{x}}{\mathrm{2}}} \left({cos}\left({x}\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)−{isin}\left({x}\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)\right) \\ $$$$\Rightarrow\sum_{{k}=\mathrm{0}} ^{\infty} \:\:\frac{{x}^{\mathrm{3}{k}} }{\left(\mathrm{3}{k}\right)!}\:=\frac{\mathrm{1}}{\mathrm{3}}\left(\:{e}^{{x}} \:\:+\mathrm{2}\:{e}^{−\frac{{x}}{\mathrm{2}}} \:{cos}\left({x}\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)\right)\:\:. \\ $$