Question Number 43535 by maxmathsup by imad last updated on 11/Sep/18

Commented by MJS last updated on 12/Sep/18

Commented by maxmathsup by imad last updated on 12/Sep/18
![let A = ∫_(π/4) ^(π/3) (√(1+tanθ))dθ changement (√(1+tanθ))=x give 1+tanθ =x^2 ⇒ θ =artan(x^2 −1) ⇒dθ =((2x)/(1+(x^2 −1)^2 ))dx ⇒ A = ∫_(√2) ^(√(1+(√3))) x ((2xdx)/(1+(x^2 −1)^2 )) = ∫_(√2) ^(√(1+(√3))) ((2x^2 )/(1+x^4 −2x^2 +1))dx =∫_(√2) ^(√(1+(√3))) ((2x^2 )/(x^4 −2x^2 +2))dx let decompose inside C(x) F(x)=((2x^2 )/(x^4 −2x^2 +2)) roots of x^4 −2x^2 +2 →x^2 =t ⇒t^2 −2t +2 →Δ^′ =−1 ⇒ z_1 =1+i and z_2 =1−i ⇒F(x)=(a/(x−z_1 )) +(b/(x−z_2 )) a=lim_(x→z_1 ) (x−z_1 )F(x)=((2z_1 ^2 )/(z_1 −z_2 )) = ((2(1+i)^2 )/(2i)) =2 b =lim_(x→z_2 ) (x−z_2 )F(x)=((2z_2 ^2 )/(z_2 −z_1 )) = ((2(1−i)^2 )/(−2i)) =2 ⇒ F(x) =(2/(x^2 −1−i)) +(2/(x^2 −1+i)) ⇒ A = ∫_(√2) ^(√(1+(√3))) ((2dx)/(x^2 −1−i)) + ∫_(√2) ^(√(1+(√3))) ((2dx)/(x^2 −1+i)) =H +H^− = 2Re(H) = 2 Re( ∫_(√2) ^(√(1+(√3))) ((2dx)/(x^2 −1−i))) let decompose f(x) =(2/(x^2 −(1+i))) ⇒f(x)= (2/((x−(√(1+i)))(x+(√(1+i))))) wd have 1+i =(√2)e^((iπ)/4) ⇒(√(1+i))=2^(1/4) e^((iπ)/8) ⇒f(x) =(2/((x−2^(1/4) e^((iπ)/8) )(x+2^(1/4) e^((iπ)/8) ))) =(a/(x−2^(1/4) e^((iπ)/8) )) +(b/(x+2^(1/4) e^((iπ)/8) )) a = (2/(2 2^(1/4) e^((iπ)/8) )) =2^(−(1/4)) e^(−((iπ)/8)) and b = (2/(−2.2^(1/4) e^((iπ)/8) )) =−2^(1/4) e^(−((iπ)/8)) ⇒ f(x) =2^(1/4) e^(−((iπ)/8)) { (1/(x−2^(1/4) e^((iπ)/8) )) − (1/(x+2^(1/4) e^((iπ)/8) ))}⇒∫_(√2) ^(√(1+(√3))) ((2dx)/(x^2 −1−i)) =2^(1/4) e^(−((iπ)/8)) { ∫_(√2) ^(√(1+(√3))) (dx/(x−2^(1/4) e^((iπ)/8) )) −∫_(√2) ^(√(1+(√3))) (dx/(x+2^(1/4) e^((iπ)/8) ))} let find ∫ (dx/(x−z)) with z =a+ib ∫ (dx/(x−z)) = ∫ (dx/(x−a−ib)) = ∫ ((x−a +ib)/((x−a)^2 +b^2 )) dx =(1/2)ln{(x−a)^2 +b^2 } +ib ∫ (dx/((x−a)^2 +b^2 )) but ∫ (dx/((x−a)^2 +b^2 )) =_(x−a=bt) ∫ ((bdt)/(b^2 (1+t^2 ))) =(1/b) arctan(((x−a)/b)) ⇒ ∫ (dx/(x−z)) =(1/2)ln{(x−a)^2 +b^2 } +i arctan(((x−a)/b))we have 2^(1/4) e^((iπ)/8) =2^(1/4) cos((π/8)) +i 2^(1/4) sin((π/8)) =a+ib ⇒ ∫_(√2) ^(√(1+(√3))) (dx/(x−2^(1/4) e^((iπ)/8) )) =[(1/2)ln{(x−2^(1/4) cos((π/8)))^2 +(√2)sin^2 ((π/8))}]_(√2) ^(√(1+(√3))) +i[ arctan{((x−2^(1/4) cos((π/8)))/(2^(1/4) sin((π/8))))}]_(√2) ^(√(1+(√3))) so the value of A is known after calculus..](https://www.tinkutara.com/question/Q43609.png)
Answered by behi83417@gmail.com last updated on 12/Sep/18
![tgθ=tg^2 x⇒(1+tg^2 θ)dθ=2tgx(1+tg^2 x)dx I=∫ (1/(cosx)).((2tgx(1+tg^2 x))/((1+tg^4 x)))dx= =∫ ((((2sinx)/(cosx)).(1/(cos^2 x)))/(cosx(((sin^4 x+cos^4 x)/(cos^4 x)))))dx= =∫ ((2sinx)/(sin^4 x+cos^4 x))dx= =∫((2sinx)/(1−2cos^2 x(1−cos^2 x)))dx= =∫((2sinx)/(2cos^4 x−2cos^2 x+1))dx=−∫(du/(2u^4 −2u^2 +1))... 2u^4 −2u^2 +1=0⇒u^2 =((2±(√(4−8)))/4)= =(1/2)(1±i)=α^2 ,β^2 (α,β∈C) [α^2 +β^2 =1,α^2 −β^2 =i,αβ=(1/( (√2)))] (α+β)^2 =1+2×(1/( (√2)))=(√2)+1⇒α+β=(√((√2)+1)) α−β=−((√2)−1)⇒α−β=i(√((√2)−1)) ⇒ { ((α=(1/2)[(√((√2)+1))+i(√((√2)−1))))),((β=(1/2)[(√((√2)+1))−i(√((√2)−1))))) :} I=∫(du/((u−α)(u+α)(u−β)(u+β)))= =(i/(2α)).ln((u+α)/(u−α))−(i/(2β)).ln((u+β)/(u−β))+const.= =(i/(2α))ln((u+α)/(u−β))−(i/(2β))ln((u+β)/(u−β))+const.== =(i/(2α))ln(((√(2+tgθ))+α)/( (√(2+tgθ))−α))−(i/(2β))ln(((√(2+tgθ))+β)/( (√(2+tgθ))−β))+const [(1/(Π(u−α)))=Σ(k/((u−α))) u=α⇒k_1 =(1/((2α)(α^2 −β^2 )))=((−i)/(2α)) u=−α⇒k_2 =(1/((2α)(β^2 −α^2 )))=(i/(2α)) u=β⇒k_3 =(1/(2β(β^2 −α^2 )))=(i/(2β)) u=−β⇒k_4 =(1/(2β(α^2 −β^2 )))=((−i)/(2β))]](https://www.tinkutara.com/question/Q43561.png)
Answered by MJS last updated on 13/Sep/18
![∫(√(1+tan θ)) dθ=∫((sec^2 θ)/(1+tan^2 θ))(√(1+tan θ)) dθ= [t=1+tan θ → dθ=(dt/(sec^2 θ))] =∫((√t)/(1+(t−1)^2 ))dt= [u=(√t) → dt=2(√t)du] =2∫(u^2 /(1+(u^2 −1)^2 ))du=2∫(u^2 /(u^4 −2u^2 +2))du= =2∫(u^2 /((u^2 −(√(2+(√8)))u+(√2))(u^2 +(√(2+(√8)))u+(√2))))du= [a=(√(2+(√8))); b=(√2)] =2∫(u^2 /((u^2 −au+b)(u^2 +au+b)))du= =2∫((u/(2a(u^2 −au+b)))−(u/(2a(u^2 +au+b))))du= =(1/a)∫(u/(u^2 −au+b))du−(1/a)∫(u/(u^2 +au+b))du ∫(u/(u^2 −au+b))du=∫(((2u−a)/(2(u^2 −au+b)))+(a/(2(u^2 −au+b)))du= =(1/2)∫((2u−a)/(u^2 −au+b))du+(a/2)∫(du/(u^2 −au+b))= [these are standard integrals] =(1/2)ln (u^2 −au+b) +(a/( (√(4b−a^2 ))))arctan ((2u−a)/( (√(4b−a^2 )))) ∫(u/(u^2 +au+b))du=∫(((2u+a)/(2(u^2 +au+b)))−(a/(2(u^2 +au+b))))du= =(1/2)∫((2u+a)/(u^2 +au+b))du−(a/2)∫(du/(u^2 +au+b))= [again standard integrals] =(1/2)ln (u^2 +au+b) −(a/( (√(4b−a^2 ))))arctan ((2u+a)/( (√(4b−a^2 )))) =(1/(2a))(ln (u^2 −au+b) +ln (u^2 +au+b))+(1/( (√(4b−a^2 ))))(arctan ((2u−a)/( (√(4b−a^2 )))) −arctan ((2u+a)/( (√(4b−a^2 )))))= =(1/(2a))ln (u^4 +(2b−a^2 )u^2 +b^2 ) +(1/( (√(4b−a^2 ))))(arctan ((2u−a)/( (√(4b−a^2 )))) −arctan ((2u+a)/( (√(4b−a^2 )))))= =(1/(2a))ln ∣t^2 +(2b−a^2 )t+b^2 ∣ +(1/( (√(4b−a^2 ))))(arctan ((2(√t)−a)/( (√(4b−a^2 )))) −arctan ((2(√t)+a)/( (√(4b−a^2 )))))+C sorry no time to finish t=1+tan θ a=(√(2+(√8))) b=(√2)](https://www.tinkutara.com/question/Q43673.png)
Commented by maxmathsup by imad last updated on 13/Sep/18
