Question Number 43535 by maxmathsup by imad last updated on 11/Sep/18
$$\left.\mathrm{1}\right)\:{find}\:{the}\:{value}\:{of}\:\:\int_{\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{3}}} \:\sqrt{\mathrm{1}+{tan}\theta}{d}\theta\:. \\ $$
Commented by MJS last updated on 12/Sep/18
$$\mathrm{it}'\mathrm{s}\:\mathrm{possible}\:\mathrm{but}\:\mathrm{it}'\mathrm{s}\:\mathrm{a}\:\mathrm{long}\:\mathrm{way} \\ $$$$\mathrm{start}\:\mathrm{with} \\ $$$$\sqrt{\mathrm{1}+\mathrm{tan}\:\theta}=\mathrm{sec}^{\mathrm{2}} \:\theta\:\frac{\sqrt{\mathrm{1}+\mathrm{tan}\:\theta}}{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\theta} \\ $$$$\mathrm{then}\:{t}=\mathrm{1}+\mathrm{tan}\:\theta\:\rightarrow\:{d}\theta=\frac{{dt}}{\mathrm{sec}^{\mathrm{2}} \:\theta}\:\mathrm{which}\:\mathrm{leads} \\ $$$$\mathrm{to}\:\frac{\sqrt{{t}}}{\mathrm{1}+\left({t}−\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\mathrm{then}\:{u}=\sqrt{{t}}\:\rightarrow\:{dt}=\mathrm{2}\sqrt{{t}}{du}\:\mathrm{which}\:\mathrm{leads}\:\mathrm{to} \\ $$$$\frac{\mathrm{2}{v}^{\mathrm{2}} }{\mathrm{1}+\left({v}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} }=\frac{\mathrm{2}{v}^{\mathrm{2}} }{{v}^{\mathrm{4}} −\mathrm{2}{v}^{\mathrm{2}} +\mathrm{2}} \\ $$$$\mathrm{then}\:\mathrm{factorise}\:\mathrm{the}\:\mathrm{denominator}\:\mathrm{and}\:\mathrm{decompose} \\ $$$$\mathrm{the}\:\mathrm{fraction}… \\ $$
Commented by maxmathsup by imad last updated on 12/Sep/18
$${let}\:{A}\:=\:\int_{\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{3}}} \:\sqrt{\mathrm{1}+{tan}\theta}{d}\theta\:{changement}\:\sqrt{\mathrm{1}+{tan}\theta}={x}\:{give}\:\mathrm{1}+{tan}\theta\:={x}^{\mathrm{2}} \:\Rightarrow \\ $$$$\theta\:={artan}\left({x}^{\mathrm{2}} −\mathrm{1}\right)\:\Rightarrow{d}\theta\:=\frac{\mathrm{2}{x}}{\mathrm{1}+\left({x}^{\mathrm{2}} \:−\mathrm{1}\right)^{\mathrm{2}} }{dx}\:\Rightarrow \\ $$$${A}\:=\:\int_{\sqrt{\mathrm{2}}} ^{\sqrt{\mathrm{1}+\sqrt{\mathrm{3}}}} {x}\:\frac{\mathrm{2}{xdx}}{\mathrm{1}+\left({x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} }\:=\:\int_{\sqrt{\mathrm{2}}} ^{\sqrt{\mathrm{1}+\sqrt{\mathrm{3}}}} \:\frac{\mathrm{2}{x}^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{4}} \:−\mathrm{2}{x}^{\mathrm{2}} \:+\mathrm{1}}{dx} \\ $$$$=\int_{\sqrt{\mathrm{2}}} ^{\sqrt{\mathrm{1}+\sqrt{\mathrm{3}}}} \:\frac{\mathrm{2}{x}^{\mathrm{2}} }{{x}^{\mathrm{4}} \:−\mathrm{2}{x}^{\mathrm{2}} \:+\mathrm{2}}{dx}\:{let}\:{decompose}\:{inside}\:{C}\left({x}\right)\:{F}\left({x}\right)=\frac{\mathrm{2}{x}^{\mathrm{2}} }{{x}^{\mathrm{4}} \:−\mathrm{2}{x}^{\mathrm{2}} \:+\mathrm{2}} \\ $$$${roots}\:{of}\:{x}^{\mathrm{4}} \:−\mathrm{2}{x}^{\mathrm{2}} \:+\mathrm{2}\:\rightarrow{x}^{\mathrm{2}} ={t}\:\Rightarrow{t}^{\mathrm{2}} \:−\mathrm{2}{t}\:+\mathrm{2}\:\rightarrow\Delta^{'} =−\mathrm{1}\:\Rightarrow \\ $$$${z}_{\mathrm{1}} =\mathrm{1}+{i}\:{and}\:{z}_{\mathrm{2}} =\mathrm{1}−{i}\:\Rightarrow{F}\left({x}\right)=\frac{{a}}{{x}−{z}_{\mathrm{1}} }\:+\frac{{b}}{{x}−{z}_{\mathrm{2}} } \\ $$$${a}={lim}_{{x}\rightarrow{z}_{\mathrm{1}} } \left({x}−{z}_{\mathrm{1}} \right){F}\left({x}\right)=\frac{\mathrm{2}{z}_{\mathrm{1}} ^{\mathrm{2}} }{{z}_{\mathrm{1}} −{z}_{\mathrm{2}} }\:=\:\frac{\mathrm{2}\left(\mathrm{1}+{i}\right)^{\mathrm{2}} }{\mathrm{2}{i}}\:=\mathrm{2} \\ $$$${b}\:={lim}_{{x}\rightarrow{z}_{\mathrm{2}} } \left({x}−{z}_{\mathrm{2}} \right){F}\left({x}\right)=\frac{\mathrm{2}{z}_{\mathrm{2}} ^{\mathrm{2}} }{{z}_{\mathrm{2}} −{z}_{\mathrm{1}} }\:=\:\frac{\mathrm{2}\left(\mathrm{1}−{i}\right)^{\mathrm{2}} }{−\mathrm{2}{i}}\:=\mathrm{2}\:\Rightarrow \\ $$$${F}\left({x}\right)\:=\frac{\mathrm{2}}{{x}^{\mathrm{2}} −\mathrm{1}−{i}}\:+\frac{\mathrm{2}}{{x}^{\mathrm{2}} −\mathrm{1}+{i}}\:\Rightarrow\:{A}\:=\:\int_{\sqrt{\mathrm{2}}} ^{\sqrt{\mathrm{1}+\sqrt{\mathrm{3}}}} \:\frac{\mathrm{2}{dx}}{{x}^{\mathrm{2}} −\mathrm{1}−{i}}\:+\:\:\int_{\sqrt{\mathrm{2}}} ^{\sqrt{\mathrm{1}+\sqrt{\mathrm{3}}}} \:\:\:\frac{\mathrm{2}{dx}}{{x}^{\mathrm{2}} −\mathrm{1}+{i}} \\ $$$$={H}\:+\overset{−} {{H}}\:=\:\mathrm{2}{Re}\left({H}\right)\:=\:\mathrm{2}\:{Re}\left(\:\int_{\sqrt{\mathrm{2}}} ^{\sqrt{\mathrm{1}+\sqrt{\mathrm{3}}}} \:\:\frac{\mathrm{2}{dx}}{{x}^{\mathrm{2}} −\mathrm{1}−{i}}\right)\:\:{let}\:{decompose} \\ $$$${f}\left({x}\right)\:=\frac{\mathrm{2}}{{x}^{\mathrm{2}} −\left(\mathrm{1}+{i}\right)}\:\Rightarrow{f}\left({x}\right)=\:\frac{\mathrm{2}}{\left({x}−\sqrt{\mathrm{1}+{i}}\right)\left({x}+\sqrt{\mathrm{1}+{i}}\right)}\:\:{wd}\:{have}\: \\ $$$$\mathrm{1}+{i}\:=\sqrt{\mathrm{2}}{e}^{\frac{{i}\pi}{\mathrm{4}}} \:\Rightarrow\sqrt{\mathrm{1}+{i}}=\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{4}}} \:{e}^{\frac{{i}\pi}{\mathrm{8}}} \:\Rightarrow{f}\left({x}\right)\:=\frac{\mathrm{2}}{\left({x}−\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{4}}} \:{e}^{\frac{{i}\pi}{\mathrm{8}}} \right)\left({x}+\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{4}}} \:{e}^{\frac{{i}\pi}{\mathrm{8}}} \right)} \\ $$$$=\frac{{a}}{{x}−\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{4}}} \:{e}^{\frac{{i}\pi}{\mathrm{8}}} }\:+\frac{{b}}{{x}+\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{4}}} \:{e}^{\frac{{i}\pi}{\mathrm{8}}} } \\ $$$${a}\:=\:\frac{\mathrm{2}}{\mathrm{2}\:\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{4}}} \:{e}^{\frac{{i}\pi}{\mathrm{8}}} }\:=\mathrm{2}^{−\frac{\mathrm{1}}{\mathrm{4}}} \:{e}^{−\frac{{i}\pi}{\mathrm{8}}} \:\:{and}\:{b}\:=\:\frac{\mathrm{2}}{−\mathrm{2}.\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{4}}} \:{e}^{\frac{{i}\pi}{\mathrm{8}}} }\:=−\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{4}}} \:{e}^{−\frac{{i}\pi}{\mathrm{8}}} \:\Rightarrow \\ $$$${f}\left({x}\right)\:=\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{4}}} \:{e}^{−\frac{{i}\pi}{\mathrm{8}}} \:\left\{\:\:\frac{\mathrm{1}}{{x}−\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{4}}} \:{e}^{\frac{{i}\pi}{\mathrm{8}}} }\:−\:\frac{\mathrm{1}}{{x}+\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{4}}} \:{e}^{\frac{{i}\pi}{\mathrm{8}}} }\right\}\Rightarrow\int_{\sqrt{\mathrm{2}}} ^{\sqrt{\mathrm{1}+\sqrt{\mathrm{3}}}} \frac{\mathrm{2}{dx}}{{x}^{\mathrm{2}} −\mathrm{1}−{i}} \\ $$$$=\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{4}}} \:{e}^{−\frac{{i}\pi}{\mathrm{8}}} \left\{\:\:\int_{\sqrt{\mathrm{2}}} ^{\sqrt{\mathrm{1}+\sqrt{\mathrm{3}}}} \:\:\frac{{dx}}{{x}−\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{4}}} \:{e}^{\frac{{i}\pi}{\mathrm{8}}} }\:−\int_{\sqrt{\mathrm{2}}} ^{\sqrt{\mathrm{1}+\sqrt{\mathrm{3}}}} \:\:\frac{{dx}}{{x}+\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{4}}} \:{e}^{\frac{{i}\pi}{\mathrm{8}}} }\right\}\:{let}\:{find} \\ $$$$\int\:\:\:\frac{{dx}}{{x}−{z}}\:\:\:{with}\:{z}\:={a}+{ib} \\ $$$$\int\:\:\:\frac{{dx}}{{x}−{z}}\:=\:\int\:\:\:\frac{{dx}}{{x}−{a}−{ib}}\:=\:\int\:\:\:\frac{{x}−{a}\:+{ib}}{\left({x}−{a}\right)^{\mathrm{2}} \:+{b}^{\mathrm{2}} }\:{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}{ln}\left\{\left({x}−{a}\right)^{\mathrm{2}} \:+{b}^{\mathrm{2}} \right\}\:+{ib}\:\int\:\:\:\frac{{dx}}{\left({x}−{a}\right)^{\mathrm{2}} \:+{b}^{\mathrm{2}} }\:\:{but}\:\: \\ $$$$\int\:\:\:\frac{{dx}}{\left({x}−{a}\right)^{\mathrm{2}} \:+{b}^{\mathrm{2}} }\:=_{{x}−{a}={bt}} \:\int\:\:\:\:\frac{{bdt}}{{b}^{\mathrm{2}} \left(\mathrm{1}+{t}^{\mathrm{2}} \right)}\:=\frac{\mathrm{1}}{{b}}\:{arctan}\left(\frac{{x}−{a}}{{b}}\right)\:\Rightarrow \\ $$$$\int\:\:\:\frac{{dx}}{{x}−{z}}\:\:=\frac{\mathrm{1}}{\mathrm{2}}{ln}\left\{\left({x}−{a}\right)^{\mathrm{2}} \:+{b}^{\mathrm{2}} \right\}\:+{i}\:{arctan}\left(\frac{{x}−{a}}{{b}}\right){we}\:{have} \\ $$$$\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{4}}} \:{e}^{\frac{{i}\pi}{\mathrm{8}}} \:=\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{4}}} \:{cos}\left(\frac{\pi}{\mathrm{8}}\right)\:+{i}\:\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{4}}} \:{sin}\left(\frac{\pi}{\mathrm{8}}\right)\:={a}+{ib}\:\Rightarrow \\ $$$$\int_{\sqrt{\mathrm{2}}} ^{\sqrt{\mathrm{1}+\sqrt{\mathrm{3}}}} \:\frac{{dx}}{{x}−\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{4}}} \:{e}^{\frac{{i}\pi}{\mathrm{8}}} }\:=\left[\frac{\mathrm{1}}{\mathrm{2}}{ln}\left\{\left({x}−\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{4}}} \:{cos}\left(\frac{\pi}{\mathrm{8}}\right)\right)^{\mathrm{2}} \:+\sqrt{\mathrm{2}}{sin}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{8}}\right)\right\}\right]_{\sqrt{\mathrm{2}}} ^{\sqrt{\mathrm{1}+\sqrt{\mathrm{3}}}} \\ $$$$+{i}\left[\:{arctan}\left\{\frac{{x}−\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{4}}} \:{cos}\left(\frac{\pi}{\mathrm{8}}\right)}{\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{4}}} \:{sin}\left(\frac{\pi}{\mathrm{8}}\right)}\right\}\right]_{\sqrt{\mathrm{2}}} ^{\sqrt{\mathrm{1}+\sqrt{\mathrm{3}}}} \:\:\:{so}\:{the}\:{value}\:{of}\:\:{A}\:{is}\:{known}\:{after}\: \\ $$$${calculus}.. \\ $$$$ \\ $$
Answered by behi83417@gmail.com last updated on 12/Sep/18
$${tg}\theta={tg}^{\mathrm{2}} {x}\Rightarrow\left(\mathrm{1}+{tg}^{\mathrm{2}} \theta\right){d}\theta=\mathrm{2}{tgx}\left(\mathrm{1}+{tg}^{\mathrm{2}} {x}\right){dx} \\ $$$${I}=\int\:\:\:\frac{\mathrm{1}}{{cosx}}.\frac{\mathrm{2}{tgx}\left(\mathrm{1}+{tg}^{\mathrm{2}} {x}\right)}{\left(\mathrm{1}+{tg}^{\mathrm{4}} {x}\right)}{dx}= \\ $$$$=\int\:\:\frac{\frac{\mathrm{2}{sinx}}{{cosx}}.\frac{\mathrm{1}}{{cos}^{\mathrm{2}} {x}}}{{cosx}\left(\frac{{sin}^{\mathrm{4}} {x}+{cos}^{\mathrm{4}} {x}}{{cos}^{\mathrm{4}} {x}}\right)}{dx}= \\ $$$$=\int\:\:\frac{\mathrm{2}{sinx}}{{sin}^{\mathrm{4}} {x}+{cos}^{\mathrm{4}} {x}}{dx}= \\ $$$$=\int\frac{\mathrm{2}{sinx}}{\mathrm{1}−\mathrm{2}{cos}^{\mathrm{2}} {x}\left(\mathrm{1}−{cos}^{\mathrm{2}} {x}\right)}{dx}= \\ $$$$=\int\frac{\mathrm{2}{sinx}}{\mathrm{2}{cos}^{\mathrm{4}} {x}−\mathrm{2}{cos}^{\mathrm{2}} {x}+\mathrm{1}}{dx}=−\int\frac{{du}}{\mathrm{2}{u}^{\mathrm{4}} −\mathrm{2}{u}^{\mathrm{2}} +\mathrm{1}}… \\ $$$$ \\ $$$$\mathrm{2}{u}^{\mathrm{4}} −\mathrm{2}{u}^{\mathrm{2}} +\mathrm{1}=\mathrm{0}\Rightarrow{u}^{\mathrm{2}} =\frac{\mathrm{2}\pm\sqrt{\mathrm{4}−\mathrm{8}}}{\mathrm{4}}= \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}\pm{i}\right)=\alpha^{\mathrm{2}} ,\beta^{\mathrm{2}} \:\:\:\left(\alpha,\beta\in\boldsymbol{\mathrm{C}}\right) \\ $$$$\left[\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} =\mathrm{1},\alpha^{\mathrm{2}} −\beta^{\mathrm{2}} ={i},\alpha\beta=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right] \\ $$$$\left(\alpha+\beta\right)^{\mathrm{2}} =\mathrm{1}+\mathrm{2}×\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}=\sqrt{\mathrm{2}}+\mathrm{1}\Rightarrow\alpha+\beta=\sqrt{\sqrt{\mathrm{2}}+\mathrm{1}} \\ $$$$\alpha−\beta=−\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)\Rightarrow\alpha−\beta={i}\sqrt{\sqrt{\mathrm{2}}−\mathrm{1}} \\ $$$$\Rightarrow\begin{cases}{\alpha=\frac{\mathrm{1}}{\mathrm{2}}\left[\sqrt{\sqrt{\mathrm{2}}+\mathrm{1}}+{i}\sqrt{\sqrt{\mathrm{2}}−\mathrm{1}}\right)}\\{\beta=\frac{\mathrm{1}}{\mathrm{2}}\left[\sqrt{\sqrt{\mathrm{2}}+\mathrm{1}}−{i}\sqrt{\sqrt{\mathrm{2}}−\mathrm{1}}\right)}\end{cases} \\ $$$${I}=\int\frac{{du}}{\left({u}−\alpha\right)\left({u}+\alpha\right)\left({u}−\beta\right)\left({u}+\beta\right)}= \\ $$$$=\frac{{i}}{\mathrm{2}\alpha}.{ln}\frac{{u}+\alpha}{{u}−\alpha}−\frac{{i}}{\mathrm{2}\beta}.{ln}\frac{{u}+\beta}{{u}−\beta}+{const}.= \\ $$$$=\frac{{i}}{\mathrm{2}\alpha}{ln}\frac{{u}+\alpha}{{u}−\beta}−\frac{{i}}{\mathrm{2}\beta}{ln}\frac{{u}+\beta}{{u}−\beta}+{const}.== \\ $$$$=\frac{{i}}{\mathrm{2}\alpha}{ln}\frac{\sqrt{\mathrm{2}+{tg}\theta}+\alpha}{\:\sqrt{\mathrm{2}+{tg}\theta}−\alpha}−\frac{{i}}{\mathrm{2}\beta}{ln}\frac{\sqrt{\mathrm{2}+{tg}\theta}+\beta}{\:\sqrt{\mathrm{2}+{tg}\theta}−\beta}+{const} \\ $$$$ \\ $$$$\left[\frac{\mathrm{1}}{\Pi\left({u}−\alpha\right)}=\Sigma\frac{{k}}{\left({u}−\alpha\right)}\right. \\ $$$${u}=\alpha\Rightarrow{k}_{\mathrm{1}} =\frac{\mathrm{1}}{\left(\mathrm{2}\alpha\right)\left(\alpha^{\mathrm{2}} −\beta^{\mathrm{2}} \right)}=\frac{−{i}}{\mathrm{2}\alpha} \\ $$$${u}=−\alpha\Rightarrow{k}_{\mathrm{2}} =\frac{\mathrm{1}}{\left(\mathrm{2}\alpha\right)\left(\beta^{\mathrm{2}} −\alpha^{\mathrm{2}} \right)}=\frac{{i}}{\mathrm{2}\alpha} \\ $$$${u}=\beta\Rightarrow{k}_{\mathrm{3}} =\frac{\mathrm{1}}{\mathrm{2}\beta\left(\beta^{\mathrm{2}} −\alpha^{\mathrm{2}} \right)}=\frac{{i}}{\mathrm{2}\beta} \\ $$$$\left.{u}=−\beta\Rightarrow{k}_{\mathrm{4}} =\frac{\mathrm{1}}{\mathrm{2}\beta\left(\alpha^{\mathrm{2}} −\beta^{\mathrm{2}} \right)}=\frac{−{i}}{\mathrm{2}\beta}\right] \\ $$
Answered by MJS last updated on 13/Sep/18
$$\int\sqrt{\mathrm{1}+\mathrm{tan}\:\theta}\:{d}\theta=\int\frac{\mathrm{sec}^{\mathrm{2}} \:\theta}{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\theta}\sqrt{\mathrm{1}+\mathrm{tan}\:\theta}\:{d}\theta= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{1}+\mathrm{tan}\:\theta\:\rightarrow\:{d}\theta=\frac{{dt}}{\mathrm{sec}^{\mathrm{2}} \:\theta}\right] \\ $$$$=\int\frac{\sqrt{{t}}}{\mathrm{1}+\left({t}−\mathrm{1}\right)^{\mathrm{2}} }{dt}= \\ $$$$\:\:\:\:\:\left[{u}=\sqrt{{t}}\:\rightarrow\:{dt}=\mathrm{2}\sqrt{{t}}{du}\right] \\ $$$$=\mathrm{2}\int\frac{{u}^{\mathrm{2}} }{\mathrm{1}+\left({u}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} }{du}=\mathrm{2}\int\frac{{u}^{\mathrm{2}} }{{u}^{\mathrm{4}} −\mathrm{2}{u}^{\mathrm{2}} +\mathrm{2}}{du}= \\ $$$$=\mathrm{2}\int\frac{{u}^{\mathrm{2}} }{\left({u}^{\mathrm{2}} −\sqrt{\mathrm{2}+\sqrt{\mathrm{8}}}{u}+\sqrt{\mathrm{2}}\right)\left({u}^{\mathrm{2}} +\sqrt{\mathrm{2}+\sqrt{\mathrm{8}}}{u}+\sqrt{\mathrm{2}}\right)}{du}= \\ $$$$\:\:\:\:\:\left[{a}=\sqrt{\mathrm{2}+\sqrt{\mathrm{8}}};\:{b}=\sqrt{\mathrm{2}}\right] \\ $$$$=\mathrm{2}\int\frac{{u}^{\mathrm{2}} }{\left({u}^{\mathrm{2}} −{au}+{b}\right)\left({u}^{\mathrm{2}} +{au}+{b}\right)}{du}= \\ $$$$=\mathrm{2}\int\left(\frac{{u}}{\mathrm{2}{a}\left({u}^{\mathrm{2}} −{au}+{b}\right)}−\frac{{u}}{\mathrm{2}{a}\left({u}^{\mathrm{2}} +{au}+{b}\right)}\right){du}= \\ $$$$=\frac{\mathrm{1}}{{a}}\int\frac{{u}}{{u}^{\mathrm{2}} −{au}+{b}}{du}−\frac{\mathrm{1}}{{a}}\int\frac{{u}}{{u}^{\mathrm{2}} +{au}+{b}}{du} \\ $$$$ \\ $$$$\:\:\:\:\:\int\frac{{u}}{{u}^{\mathrm{2}} −{au}+{b}}{du}=\int\left(\frac{\mathrm{2}{u}−{a}}{\mathrm{2}\left({u}^{\mathrm{2}} −{au}+{b}\right)}+\frac{{a}}{\mathrm{2}\left({u}^{\mathrm{2}} −{au}+{b}\right.}\right){du}= \\ $$$$\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{\mathrm{2}{u}−{a}}{{u}^{\mathrm{2}} −{au}+{b}}{du}+\frac{{a}}{\mathrm{2}}\int\frac{{du}}{{u}^{\mathrm{2}} −{au}+{b}}= \\ $$$$\:\:\:\:\:\:\:\:\:\:\left[\mathrm{these}\:\mathrm{are}\:\mathrm{standard}\:\mathrm{integrals}\right] \\ $$$$\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\left({u}^{\mathrm{2}} −{au}+{b}\right)\:+\frac{{a}}{\:\sqrt{\mathrm{4}{b}−{a}^{\mathrm{2}} }}\mathrm{arctan}\:\frac{\mathrm{2}{u}−{a}}{\:\sqrt{\mathrm{4}{b}−{a}^{\mathrm{2}} }} \\ $$$$ \\ $$$$\:\:\:\:\:\int\frac{{u}}{{u}^{\mathrm{2}} +{au}+{b}}{du}=\int\left(\frac{\mathrm{2}{u}+{a}}{\mathrm{2}\left({u}^{\mathrm{2}} +{au}+{b}\right)}−\frac{{a}}{\mathrm{2}\left({u}^{\mathrm{2}} +{au}+{b}\right)}\right){du}= \\ $$$$\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{\mathrm{2}{u}+{a}}{{u}^{\mathrm{2}} +{au}+{b}}{du}−\frac{{a}}{\mathrm{2}}\int\frac{{du}}{{u}^{\mathrm{2}} +{au}+{b}}= \\ $$$$\:\:\:\:\:\:\:\:\:\:\left[\mathrm{again}\:\mathrm{standard}\:\mathrm{integrals}\right] \\ $$$$\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\left({u}^{\mathrm{2}} +{au}+{b}\right)\:−\frac{{a}}{\:\sqrt{\mathrm{4}{b}−{a}^{\mathrm{2}} }}\mathrm{arctan}\:\frac{\mathrm{2}{u}+{a}}{\:\sqrt{\mathrm{4}{b}−{a}^{\mathrm{2}} }} \\ $$$$ \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{a}}\left(\mathrm{ln}\:\left({u}^{\mathrm{2}} −{au}+{b}\right)\:+\mathrm{ln}\:\left({u}^{\mathrm{2}} +{au}+{b}\right)\right)+\frac{\mathrm{1}}{\:\sqrt{\mathrm{4}{b}−{a}^{\mathrm{2}} }}\left(\mathrm{arctan}\:\frac{\mathrm{2}{u}−{a}}{\:\sqrt{\mathrm{4}{b}−{a}^{\mathrm{2}} }}\:−\mathrm{arctan}\:\frac{\mathrm{2}{u}+{a}}{\:\sqrt{\mathrm{4}{b}−{a}^{\mathrm{2}} }}\right)= \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{a}}\mathrm{ln}\:\left({u}^{\mathrm{4}} +\left(\mathrm{2}{b}−{a}^{\mathrm{2}} \right){u}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)\:+\frac{\mathrm{1}}{\:\sqrt{\mathrm{4}{b}−{a}^{\mathrm{2}} }}\left(\mathrm{arctan}\:\frac{\mathrm{2}{u}−{a}}{\:\sqrt{\mathrm{4}{b}−{a}^{\mathrm{2}} }}\:−\mathrm{arctan}\:\frac{\mathrm{2}{u}+{a}}{\:\sqrt{\mathrm{4}{b}−{a}^{\mathrm{2}} }}\right)= \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{a}}\mathrm{ln}\:\mid{t}^{\mathrm{2}} +\left(\mathrm{2}{b}−{a}^{\mathrm{2}} \right){t}+{b}^{\mathrm{2}} \mid\:+\frac{\mathrm{1}}{\:\sqrt{\mathrm{4}{b}−{a}^{\mathrm{2}} }}\left(\mathrm{arctan}\:\frac{\mathrm{2}\sqrt{{t}}−{a}}{\:\sqrt{\mathrm{4}{b}−{a}^{\mathrm{2}} }}\:−\mathrm{arctan}\:\frac{\mathrm{2}\sqrt{{t}}+{a}}{\:\sqrt{\mathrm{4}{b}−{a}^{\mathrm{2}} }}\right)+{C} \\ $$$$\mathrm{sorry}\:\mathrm{no}\:\mathrm{time}\:\mathrm{to}\:\mathrm{finish} \\ $$$${t}=\mathrm{1}+\mathrm{tan}\:\theta \\ $$$${a}=\sqrt{\mathrm{2}+\sqrt{\mathrm{8}}} \\ $$$${b}=\sqrt{\mathrm{2}} \\ $$
Commented by maxmathsup by imad last updated on 13/Sep/18
$${thank}\:{you}\:{sir}. \\ $$