Menu Close

1-find-the-value-of-pi-4-pi-3-1-tan-d-




Question Number 43535 by maxmathsup by imad last updated on 11/Sep/18
1) find the value of  ∫_(π/4) ^(π/3)  (√(1+tanθ))dθ .
1)findthevalueofπ4π31+tanθdθ.
Commented by MJS last updated on 12/Sep/18
it′s possible but it′s a long way  start with  (√(1+tan θ))=sec^2  θ ((√(1+tan θ))/(1+tan^2  θ))  then t=1+tan θ → dθ=(dt/(sec^2  θ)) which leads  to ((√t)/(1+(t−1)^2 ))  then u=(√t) → dt=2(√t)du which leads to  ((2v^2 )/(1+(v^2 −1)^2 ))=((2v^2 )/(v^4 −2v^2 +2))  then factorise the denominator and decompose  the fraction...
itspossiblebutitsalongwaystartwith1+tanθ=sec2θ1+tanθ1+tan2θthent=1+tanθdθ=dtsec2θwhichleadstot1+(t1)2thenu=tdt=2tduwhichleadsto2v21+(v21)2=2v2v42v2+2thenfactorisethedenominatoranddecomposethefraction
Commented by maxmathsup by imad last updated on 12/Sep/18
let A = ∫_(π/4) ^(π/3)  (√(1+tanθ))dθ changement (√(1+tanθ))=x give 1+tanθ =x^2  ⇒  θ =artan(x^2 −1) ⇒dθ =((2x)/(1+(x^2  −1)^2 ))dx ⇒  A = ∫_(√2) ^(√(1+(√3))) x ((2xdx)/(1+(x^2 −1)^2 )) = ∫_(√2) ^(√(1+(√3)))  ((2x^2 )/(1+x^4  −2x^2  +1))dx  =∫_(√2) ^(√(1+(√3)))  ((2x^2 )/(x^4  −2x^2  +2))dx let decompose inside C(x) F(x)=((2x^2 )/(x^4  −2x^2  +2))  roots of x^4  −2x^2  +2 →x^2 =t ⇒t^2  −2t +2 →Δ^′ =−1 ⇒  z_1 =1+i and z_2 =1−i ⇒F(x)=(a/(x−z_1 )) +(b/(x−z_2 ))  a=lim_(x→z_1 ) (x−z_1 )F(x)=((2z_1 ^2 )/(z_1 −z_2 )) = ((2(1+i)^2 )/(2i)) =2  b =lim_(x→z_2 ) (x−z_2 )F(x)=((2z_2 ^2 )/(z_2 −z_1 )) = ((2(1−i)^2 )/(−2i)) =2 ⇒  F(x) =(2/(x^2 −1−i)) +(2/(x^2 −1+i)) ⇒ A = ∫_(√2) ^(√(1+(√3)))  ((2dx)/(x^2 −1−i)) +  ∫_(√2) ^(√(1+(√3)))    ((2dx)/(x^2 −1+i))  =H +H^−  = 2Re(H) = 2 Re( ∫_(√2) ^(√(1+(√3)))   ((2dx)/(x^2 −1−i)))  let decompose  f(x) =(2/(x^2 −(1+i))) ⇒f(x)= (2/((x−(√(1+i)))(x+(√(1+i)))))  wd have   1+i =(√2)e^((iπ)/4)  ⇒(√(1+i))=2^(1/4)  e^((iπ)/8)  ⇒f(x) =(2/((x−2^(1/4)  e^((iπ)/8) )(x+2^(1/4)  e^((iπ)/8) )))  =(a/(x−2^(1/4)  e^((iπ)/8) )) +(b/(x+2^(1/4)  e^((iπ)/8) ))  a = (2/(2 2^(1/4)  e^((iπ)/8) )) =2^(−(1/4))  e^(−((iπ)/8))   and b = (2/(−2.2^(1/4)  e^((iπ)/8) )) =−2^(1/4)  e^(−((iπ)/8))  ⇒  f(x) =2^(1/4)  e^(−((iπ)/8))  {  (1/(x−2^(1/4)  e^((iπ)/8) )) − (1/(x+2^(1/4)  e^((iπ)/8) ))}⇒∫_(√2) ^(√(1+(√3))) ((2dx)/(x^2 −1−i))  =2^(1/4)  e^(−((iπ)/8)) {  ∫_(√2) ^(√(1+(√3)))   (dx/(x−2^(1/4)  e^((iπ)/8) )) −∫_(√2) ^(√(1+(√3)))   (dx/(x+2^(1/4)  e^((iπ)/8) ))} let find  ∫   (dx/(x−z))   with z =a+ib  ∫   (dx/(x−z)) = ∫   (dx/(x−a−ib)) = ∫   ((x−a +ib)/((x−a)^2  +b^2 )) dx  =(1/2)ln{(x−a)^2  +b^2 } +ib ∫   (dx/((x−a)^2  +b^2 ))  but    ∫   (dx/((x−a)^2  +b^2 )) =_(x−a=bt)  ∫    ((bdt)/(b^2 (1+t^2 ))) =(1/b) arctan(((x−a)/b)) ⇒  ∫   (dx/(x−z))  =(1/2)ln{(x−a)^2  +b^2 } +i arctan(((x−a)/b))we have  2^(1/4)  e^((iπ)/8)  =2^(1/4)  cos((π/8)) +i 2^(1/4)  sin((π/8)) =a+ib ⇒  ∫_(√2) ^(√(1+(√3)))  (dx/(x−2^(1/4)  e^((iπ)/8) )) =[(1/2)ln{(x−2^(1/4)  cos((π/8)))^2  +(√2)sin^2 ((π/8))}]_(√2) ^(√(1+(√3)))   +i[ arctan{((x−2^(1/4)  cos((π/8)))/(2^(1/4)  sin((π/8))))}]_(√2) ^(√(1+(√3)))    so the value of  A is known after   calculus..
letA=π4π31+tanθdθchangement1+tanθ=xgive1+tanθ=x2θ=artan(x21)dθ=2x1+(x21)2dxA=21+3x2xdx1+(x21)2=21+32x21+x42x2+1dx=21+32x2x42x2+2dxletdecomposeinsideC(x)F(x)=2x2x42x2+2rootsofx42x2+2x2=tt22t+2Δ=1z1=1+iandz2=1iF(x)=axz1+bxz2a=limxz1(xz1)F(x)=2z12z1z2=2(1+i)22i=2b=limxz2(xz2)F(x)=2z22z2z1=2(1i)22i=2F(x)=2x21i+2x21+iA=21+32dxx21i+21+32dxx21+i=H+H=2Re(H)=2Re(21+32dxx21i)letdecomposef(x)=2x2(1+i)f(x)=2(x1+i)(x+1+i)wdhave1+i=2eiπ41+i=214eiπ8f(x)=2(x214eiπ8)(x+214eiπ8)=ax214eiπ8+bx+214eiπ8a=22214eiπ8=214eiπ8andb=22.214eiπ8=214eiπ8f(x)=214eiπ8{1x214eiπ81x+214eiπ8}21+32dxx21i=214eiπ8{21+3dxx214eiπ821+3dxx+214eiπ8}letfinddxxzwithz=a+ibdxxz=dxxaib=xa+ib(xa)2+b2dx=12ln{(xa)2+b2}+ibdx(xa)2+b2butdx(xa)2+b2=xa=btbdtb2(1+t2)=1barctan(xab)dxxz=12ln{(xa)2+b2}+iarctan(xab)wehave214eiπ8=214cos(π8)+i214sin(π8)=a+ib21+3dxx214eiπ8=[12ln{(x214cos(π8))2+2sin2(π8)}]21+3+i[arctan{x214cos(π8)214sin(π8)}]21+3sothevalueofAisknownaftercalculus..
Answered by behi83417@gmail.com last updated on 12/Sep/18
tgθ=tg^2 x⇒(1+tg^2 θ)dθ=2tgx(1+tg^2 x)dx  I=∫   (1/(cosx)).((2tgx(1+tg^2 x))/((1+tg^4 x)))dx=  =∫  ((((2sinx)/(cosx)).(1/(cos^2 x)))/(cosx(((sin^4 x+cos^4 x)/(cos^4 x)))))dx=  =∫  ((2sinx)/(sin^4 x+cos^4 x))dx=  =∫((2sinx)/(1−2cos^2 x(1−cos^2 x)))dx=  =∫((2sinx)/(2cos^4 x−2cos^2 x+1))dx=−∫(du/(2u^4 −2u^2 +1))...    2u^4 −2u^2 +1=0⇒u^2 =((2±(√(4−8)))/4)=  =(1/2)(1±i)=α^2 ,β^2    (α,β∈C)  [α^2 +β^2 =1,α^2 −β^2 =i,αβ=(1/( (√2)))]  (α+β)^2 =1+2×(1/( (√2)))=(√2)+1⇒α+β=(√((√2)+1))  α−β=−((√2)−1)⇒α−β=i(√((√2)−1))  ⇒ { ((α=(1/2)[(√((√2)+1))+i(√((√2)−1))))),((β=(1/2)[(√((√2)+1))−i(√((√2)−1))))) :}  I=∫(du/((u−α)(u+α)(u−β)(u+β)))=  =(i/(2α)).ln((u+α)/(u−α))−(i/(2β)).ln((u+β)/(u−β))+const.=  =(i/(2α))ln((u+α)/(u−β))−(i/(2β))ln((u+β)/(u−β))+const.==  =(i/(2α))ln(((√(2+tgθ))+α)/( (√(2+tgθ))−α))−(i/(2β))ln(((√(2+tgθ))+β)/( (√(2+tgθ))−β))+const    [(1/(Π(u−α)))=Σ(k/((u−α)))  u=α⇒k_1 =(1/((2α)(α^2 −β^2 )))=((−i)/(2α))  u=−α⇒k_2 =(1/((2α)(β^2 −α^2 )))=(i/(2α))  u=β⇒k_3 =(1/(2β(β^2 −α^2 )))=(i/(2β))  u=−β⇒k_4 =(1/(2β(α^2 −β^2 )))=((−i)/(2β))]
tgθ=tg2x(1+tg2θ)dθ=2tgx(1+tg2x)dxI=1cosx.2tgx(1+tg2x)(1+tg4x)dx==2sinxcosx.1cos2xcosx(sin4x+cos4xcos4x)dx==2sinxsin4x+cos4xdx==2sinx12cos2x(1cos2x)dx==2sinx2cos4x2cos2x+1dx=du2u42u2+12u42u2+1=0u2=2±484==12(1±i)=α2,β2(α,βC)[α2+β2=1,α2β2=i,αβ=12](α+β)2=1+2×12=2+1α+β=2+1αβ=(21)αβ=i21{α=12[2+1+i21)β=12[2+1i21)I=du(uα)(u+α)(uβ)(u+β)==i2α.lnu+αuαi2β.lnu+βuβ+const.==i2αlnu+αuβi2βlnu+βuβ+const.===i2αln2+tgθ+α2+tgθαi2βln2+tgθ+β2+tgθβ+const[1Π(uα)=Σk(uα)u=αk1=1(2α)(α2β2)=i2αu=αk2=1(2α)(β2α2)=i2αu=βk3=12β(β2α2)=i2βu=βk4=12β(α2β2)=i2β]
Answered by MJS last updated on 13/Sep/18
∫(√(1+tan θ)) dθ=∫((sec^2  θ)/(1+tan^2  θ))(√(1+tan θ)) dθ=       [t=1+tan θ → dθ=(dt/(sec^2  θ))]  =∫((√t)/(1+(t−1)^2 ))dt=       [u=(√t) → dt=2(√t)du]  =2∫(u^2 /(1+(u^2 −1)^2 ))du=2∫(u^2 /(u^4 −2u^2 +2))du=  =2∫(u^2 /((u^2 −(√(2+(√8)))u+(√2))(u^2 +(√(2+(√8)))u+(√2))))du=       [a=(√(2+(√8))); b=(√2)]  =2∫(u^2 /((u^2 −au+b)(u^2 +au+b)))du=  =2∫((u/(2a(u^2 −au+b)))−(u/(2a(u^2 +au+b))))du=  =(1/a)∫(u/(u^2 −au+b))du−(1/a)∫(u/(u^2 +au+b))du         ∫(u/(u^2 −au+b))du=∫(((2u−a)/(2(u^2 −au+b)))+(a/(2(u^2 −au+b)))du=       =(1/2)∫((2u−a)/(u^2 −au+b))du+(a/2)∫(du/(u^2 −au+b))=            [these are standard integrals]       =(1/2)ln (u^2 −au+b) +(a/( (√(4b−a^2 ))))arctan ((2u−a)/( (√(4b−a^2 ))))         ∫(u/(u^2 +au+b))du=∫(((2u+a)/(2(u^2 +au+b)))−(a/(2(u^2 +au+b))))du=       =(1/2)∫((2u+a)/(u^2 +au+b))du−(a/2)∫(du/(u^2 +au+b))=            [again standard integrals]       =(1/2)ln (u^2 +au+b) −(a/( (√(4b−a^2 ))))arctan ((2u+a)/( (√(4b−a^2 ))))    =(1/(2a))(ln (u^2 −au+b) +ln (u^2 +au+b))+(1/( (√(4b−a^2 ))))(arctan ((2u−a)/( (√(4b−a^2 )))) −arctan ((2u+a)/( (√(4b−a^2 )))))=  =(1/(2a))ln (u^4 +(2b−a^2 )u^2 +b^2 ) +(1/( (√(4b−a^2 ))))(arctan ((2u−a)/( (√(4b−a^2 )))) −arctan ((2u+a)/( (√(4b−a^2 )))))=  =(1/(2a))ln ∣t^2 +(2b−a^2 )t+b^2 ∣ +(1/( (√(4b−a^2 ))))(arctan ((2(√t)−a)/( (√(4b−a^2 )))) −arctan ((2(√t)+a)/( (√(4b−a^2 )))))+C  sorry no time to finish  t=1+tan θ  a=(√(2+(√8)))  b=(√2)
1+tanθdθ=sec2θ1+tan2θ1+tanθdθ=[t=1+tanθdθ=dtsec2θ]=t1+(t1)2dt=[u=tdt=2tdu]=2u21+(u21)2du=2u2u42u2+2du==2u2(u22+8u+2)(u2+2+8u+2)du=[a=2+8;b=2]=2u2(u2au+b)(u2+au+b)du==2(u2a(u2au+b)u2a(u2+au+b))du==1auu2au+bdu1auu2+au+bduuu2au+bdu=(2ua2(u2au+b)+a2(u2au+b)du==122uau2au+bdu+a2duu2au+b=[thesearestandardintegrals]=12ln(u2au+b)+a4ba2arctan2ua4ba2uu2+au+bdu=(2u+a2(u2+au+b)a2(u2+au+b))du==122u+au2+au+bdua2duu2+au+b=[againstandardintegrals]=12ln(u2+au+b)a4ba2arctan2u+a4ba2=12a(ln(u2au+b)+ln(u2+au+b))+14ba2(arctan2ua4ba2arctan2u+a4ba2)==12aln(u4+(2ba2)u2+b2)+14ba2(arctan2ua4ba2arctan2u+a4ba2)==12alnt2+(2ba2)t+b2+14ba2(arctan2ta4ba2arctan2t+a4ba2)+Csorrynotimetofinisht=1+tanθa=2+8b=2
Commented by maxmathsup by imad last updated on 13/Sep/18
thank you sir.
thankyousir.thankyousir.

Leave a Reply

Your email address will not be published. Required fields are marked *