Menu Close

1-find-U-n-0-pi-4-tan-n-tdt-with-n-integr-2-find-lim-n-U-n-3-calculate-n-0-U-n-




Question Number 53471 by maxmathsup by imad last updated on 22/Jan/19
1)find  U_n = ∫_0 ^(π/4)  tan^n tdt   with n integr .  2) find lim_(n→+∞) U_n   3) calculate Σ_(n=0) ^∞  U_n
1)findUn=0π4tanntdtwithnintegr.2)findlimn+Un3)calculaten=0Un
Commented by Abdo msup. last updated on 23/Jan/19
1) we have U_n =∫_0 ^(π/4) tan^(n−2)  (tan^2 t +1−1)dt  =∫_0 ^(π/4)  (1+tan^2 t)tan^(n−2) tdt −U_(n−2)    and by parts  ∫_0 ^(π/4)  (1+tan^2 t)tan^(n−2) t dt =[tant tan^(n−2) t]_0 ^(π/4)   −∫_0 ^(π/4)   tant (n−2)tan^(n−3) (1+tan^2 t)dt  =1−(n−2)∫_0 ^(π/4)  tan^(n−2) (1+tan^2 t)dt  =1−(n−2)U_(n−2) −(n−2)U_n  ⇒  U_n = 1−(n−2)U_(n−2) −(n−2)U_n −U_(n−2)  ⇒  (n−1)U_n =1−(n−1)U_(n−2)  ⇒  U_n =(1/(n−1)) −U_(n−2)    with n≥2 ⇒  U_(2n) =(1/(2n−1)) −U_(2n−2)      and U_(2n+1) =(1/(2n)) −U_(2n−1)   let find U_(2n)   we have  U_(2n)  +U_(2n−2) =(1/(2n−1)) ⇒  Σ_(k=1) ^n (−1)^k (U_(2k)  +U_(2k−2) )=Σ_(k=1) ^n  (((−1)^k )/(2k−1)) ⇒  −(U_2 +U_0 )+U_4 +U_2  −(U_6  +U_4 ) +...  +(−1)^(n−1) (U_(2n−2)  +U_(2n−4) )+(−1)^n (U_(2n) +U_(2n−2) )  =Σ_(k=1) ^n  (((−1)^k )/(2k−1)) ⇒(−1)^n  U_(2n) =Σ_(k=1) ^n  (((−1)^k )/(2k−1)) ⇒  U_(2n) =(−1)^n  Σ_(k=1) ^n  (((−1)^k )/(2k−1))
1)wehaveUn=0π4tann2(tan2t+11)dt=0π4(1+tan2t)tann2tdtUn2andbyparts0π4(1+tan2t)tann2tdt=[tanttann2t]0π40π4tant(n2)tann3(1+tan2t)dt=1(n2)0π4tann2(1+tan2t)dt=1(n2)Un2(n2)UnUn=1(n2)Un2(n2)UnUn2(n1)Un=1(n1)Un2Un=1n1Un2withn2U2n=12n1U2n2andU2n+1=12nU2n1letfindU2nwehaveU2n+U2n2=12n1k=1n(1)k(U2k+U2k2)=k=1n(1)k2k1(U2+U0)+U4+U2(U6+U4)++(1)n1(U2n2+U2n4)+(1)n(U2n+U2n2)=k=1n(1)k2k1(1)nU2n=k=1n(1)k2k1U2n=(1)nk=1n(1)k2k1
Commented by Abdo msup. last updated on 23/Jan/19
let find U_(2n+1)    we have U_(2n+1) =(1/(2n)) −U_(2n−1)  ⇒  U_(2n+1)  +U_(2n−1) =(1/(2n)) ⇒  Σ_(k=1) ^n (−1)^k (U_(2k+1) +U_(2k−1) )=Σ_(k=1) ^n   (((−1)^k )/(2k)) ⇒  −(U_3 +U_1 )+U_5 +U_3  +....+(−1)^n (U_(2n+1)  +U_(2n−1) )  =Σ_(k=1) ^n  (((−1)^k )/(2k)) ⇒  U_(2n+1) =(((−1)^n )/2)Σ_(k=1) ^n   (((−1)^k )/k) .
letfindU2n+1wehaveU2n+1=12nU2n1U2n+1+U2n1=12nk=1n(1)k(U2k+1+U2k1)=k=1n(1)k2k(U3+U1)+U5+U3+.+(1)n(U2n+1+U2n1)=k=1n(1)k2kU2n+1=(1)n2k=1n(1)kk.
Commented by Abdo msup. last updated on 23/Jan/19
we see that (U_n ) is divergent  but we have  (−1)^n  U_(2n)  =Σ_(k=1) ^n  (((−1)^k )/(2k−1)) =_(k−1=p)  Σ_(p=0) ^(n−1)   (((−1)^(p+1) )/(2p+1))  =−Σ_(p=0) ^(n−1)    (((−1)^p )/(2p+1)) →−(π/4)(n→+∞)  also (−1)^n  U_(2n+1) =(1/2) Σ_(k=1) ^n   (((−1)^k )/k) →−((ln(2))/2)(n→+∞)
weseethat(Un)isdivergentbutwehave(1)nU2n=k=1n(1)k2k1=k1=pp=0n1(1)p+12p+1=p=0n1(1)p2p+1π4(n+)also(1)nU2n+1=12k=1n(1)kkln(2)2(n+)
Answered by tanmay.chaudhury50@gmail.com last updated on 23/Jan/19
I_n =∫tan^(n−2) t×tan^2 tdt  =∫tan^(n−2) t(sec^2 t−1)dt  =∫tan^(n−2) tsec^2 tdt−∫tan^(n−2) tdt  =∫tan^(n−2) t×d(tant)−I_(n−2)   =(((tant)^(n−2+1) )/((n−2+1)))−I_(n−2)   so U_n =∣(((tant)^(n−1) )/(n−1))∣_0 ^(π/4) −U_(n−2)   U_n =(1/(n−1))−U_(n−2)
In=tann2t×tan2tdt=tann2t(sec2t1)dt=tann2tsec2tdttann2tdt=tann2t×d(tant)In2=(tant)n2+1(n2+1)In2soUn=∣(tant)n1n10π4Un2Un=1n1Un2

Leave a Reply

Your email address will not be published. Required fields are marked *