Question Number 53471 by maxmathsup by imad last updated on 22/Jan/19

Commented by Abdo msup. last updated on 23/Jan/19
![1) we have U_n =∫_0 ^(π/4) tan^(n−2) (tan^2 t +1−1)dt =∫_0 ^(π/4) (1+tan^2 t)tan^(n−2) tdt −U_(n−2) and by parts ∫_0 ^(π/4) (1+tan^2 t)tan^(n−2) t dt =[tant tan^(n−2) t]_0 ^(π/4) −∫_0 ^(π/4) tant (n−2)tan^(n−3) (1+tan^2 t)dt =1−(n−2)∫_0 ^(π/4) tan^(n−2) (1+tan^2 t)dt =1−(n−2)U_(n−2) −(n−2)U_n ⇒ U_n = 1−(n−2)U_(n−2) −(n−2)U_n −U_(n−2) ⇒ (n−1)U_n =1−(n−1)U_(n−2) ⇒ U_n =(1/(n−1)) −U_(n−2) with n≥2 ⇒ U_(2n) =(1/(2n−1)) −U_(2n−2) and U_(2n+1) =(1/(2n)) −U_(2n−1) let find U_(2n) we have U_(2n) +U_(2n−2) =(1/(2n−1)) ⇒ Σ_(k=1) ^n (−1)^k (U_(2k) +U_(2k−2) )=Σ_(k=1) ^n (((−1)^k )/(2k−1)) ⇒ −(U_2 +U_0 )+U_4 +U_2 −(U_6 +U_4 ) +... +(−1)^(n−1) (U_(2n−2) +U_(2n−4) )+(−1)^n (U_(2n) +U_(2n−2) ) =Σ_(k=1) ^n (((−1)^k )/(2k−1)) ⇒(−1)^n U_(2n) =Σ_(k=1) ^n (((−1)^k )/(2k−1)) ⇒ U_(2n) =(−1)^n Σ_(k=1) ^n (((−1)^k )/(2k−1))](https://www.tinkutara.com/question/Q53576.png)
Commented by Abdo msup. last updated on 23/Jan/19

Commented by Abdo msup. last updated on 23/Jan/19

Answered by tanmay.chaudhury50@gmail.com last updated on 23/Jan/19
