Question Number 32707 by Rio Mike last updated on 31/Mar/18
$$\left.\mathrm{1}\right)\mathrm{find}\:\mathrm{u}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{u}\:\mathrm{if} \\ $$$$\sum_{\mathrm{n}=\mathrm{1}} ^{\mathrm{4}} \mathrm{2}{u}.\mathrm{2}^{{n}−\mathrm{1}} =\mathrm{64} \\ $$$$\left.\mathrm{2}\right)\:\mathrm{find}\:\mathrm{k}\:\mathrm{if}\: \\ $$$$\:\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \mathrm{k}.\left(\frac{\mathrm{1}}{\mathrm{3}}\right)^{\mathrm{n}−\mathrm{1}} =\frac{\mathrm{2}}{\mathrm{3}} \\ $$
Answered by MJS last updated on 31/Mar/18
$$\underset{{n}=\mathrm{1}} {\overset{\mathrm{4}} {\sum}}\mathrm{2}{u}×\mathrm{2}^{{n}−\mathrm{1}} =\mathrm{2}{u}\underset{{n}=\mathrm{1}} {\overset{\mathrm{4}} {\sum}}\mathrm{2}^{{n}−\mathrm{1}} = \\ $$$$=\mathrm{2}{u}\left(\mathrm{1}+\mathrm{2}+\mathrm{4}+\mathrm{8}\right)=\mathrm{30}{u} \\ $$$${u}=\frac{\mathrm{64}}{\mathrm{30}}=\frac{\mathrm{32}}{\mathrm{15}} \\ $$$$ \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{k}×\left(\frac{\mathrm{1}}{\mathrm{3}}\right)^{{n}−\mathrm{1}} ={k}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{3}^{{n}} }={k}×\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\frac{\mathrm{3}{k}}{\mathrm{2}}=\frac{\mathrm{2}}{\mathrm{3}} \\ $$$${k}=\frac{\mathrm{4}}{\mathrm{9}} \\ $$
Commented by NECx last updated on 02/Apr/18
$${how}\:{did}\:\underset{{n}=\mathrm{0}} {\overset{\propto} {\sum}}{k}×\left(\mathrm{1}/\mathrm{3}\right)^{{n}−\mathrm{1}\:} {become}\:\mathrm{3}{k}/\mathrm{2} \\ $$$$??? \\ $$