Menu Close

1-Find-value-of-in-Mean-Value-theorem-f-x-h-f-x-hf-x-h-if-f-x-1-x-2-If-1-x-2-1-y-2-k-x-y-prove-that-dy-dx-1-y-2-1-x-2-3-Solve-the-d




Question Number 94418 by niroj last updated on 18/May/20
 1.Find value of 𝛉 in Mean Value theorem   f(x+h)= f(x)+hf^( ′) (x+θh), if f(x)=(1/x)    2.If (√(1−x^2 ))    +(√(1−y^2 ))   = k(x−y) prove that       (dy/dx) = ((√(1−y^2 ))/( (√(1−x^2 )))).   3. Solve the differential equation:     x^2 (d^2 y/dx^2 )−3x(dy/dx)+3y = x^2 (2x−1).
1.FindvalueofθinMeanValuetheoremf(x+h)=f(x)+hf(x+θh),iff(x)=1x2.If1x2+1y2=k(xy)provethatdydx=1y21x2.3.Solvethedifferentialequation:x2d2ydx23xdydx+3y=x2(2x1).
Answered by som(math1967) last updated on 18/May/20
1.f(x)=(1/x)  ∴f^′ (x)=−(1/x^2 )  now f(x+h)=f(x)+hf^′ (x+θh)  (1/((x+h)))=(1/x) −(h/((x+θh)^2 ))   ((−h)/(x(x+h)))=((−h)/((x+θh)^2 ))  (x+θh)^2 =x^2 +hx  (x+θh)=±(√(x^2 +hx))    θ=((±(√(x^2 +hx))−x)/h) ans
1.f(x)=1xf(x)=1x2nowf(x+h)=f(x)+hf(x+θh)1(x+h)=1xh(x+θh)2hx(x+h)=h(x+θh)2(x+θh)2=x2+hx(x+θh)=±x2+hxθ=±x2+hxxhans
Commented by niroj last updated on 18/May/20
nice ����thank you.
Answered by som(math1967) last updated on 18/May/20
2. let x=sinα  y=sinβ   ∴cos α+cos β=k(sinα−sinβ)  2cos((α+β)/2)cos((α−β)/2)=2ksin((α−β)/2)cos((α+β)/2)  ((cos((α−β)/2))/(sin((α−β)/2)))=k  ((α−β)/2)=cot^(−1) k  α−β=2cot^(−1) k  sin^(−1) x−sin^(−1) y=2cot^(−1) k  (1/( (√(1−x^2 )))) −(1/( (√(1−y^2 )))).(dy/dx)=0  ∴(dy/dx)=((√(1−y^2 ))/( (√(1−x^2 ))))
2.letx=sinαy=sinβcosα+cosβ=k(sinαsinβ)2cosα+β2cosαβ2=2ksinαβ2cosα+β2cosαβ2sinαβ2=kαβ2=cot1kαβ=2cot1ksin1xsin1y=2cot1k11x211y2.dydx=0dydx=1y21x2
Commented by niroj last updated on 18/May/20
superb������ thank dear for your effort.
Answered by Mr.D.N. last updated on 18/May/20
   3. x^2 (d^2 y/dx^2 ) −3x(dy/dx)+3y = x^2 (2x−1)    Second order linear differential eq^n     with variable coefficient       (d^2 y/dx^2 )− (3/x) (dy/dx)+(3/x^2 )y = 2x−1.....(i)       P= −(3/x), Q= (3/x^2 ) and R= 2x−1    If P+Qx =0 then Part of CF u=x      −(3/x)+(3/x^2 )x=0     for complete sol^n :        y=uv      y= vx.......(ii)     We know the form :     (d^2 v/dx^2 )+(P +(2/u).(du/dx))(dv/dx)= (R/u)      (d^2 v/dx^2 )+( −(3/x)+(2/x).(dx/dx))(dv/dx)= ((2x−1)/x)      (d^2 v/dx^2 ) −(1/x).(dv/dx)= ((2x−1)/x)    Change to linear form,     Put ,  (dv/dx)= t ⇒ (d^2 v/dx^2 )= (dt/dx)     (dt/dx)− (1/x)t = ((2x−1)/x)   Now,  IF= e^(∫Pdx) = e^(−∫(1/x)dx) =e^(−log x)       IF= e^(log x^(−1) ) = (1/x)    t.(1/x) = ∫(1/x).((2x−1)/x)dx+C_1     (t/x)= ∫((2/x)−x^(−2) )dx+C_1    t.(1/x)= 2log x −(x^(−1) /((−1)))+C_1     t.(1/x)= 2log x +(1/x)+C_1     t= 2xlog x+1+C_1 x    (dv/dx)= 2x log x +1+C_1 x    ∫dv = 2∫x log x dx+∫dx +C_1 ∫xdx+C_2    v= 2[ log x.(x^2 /2)−∫(1/x).(x^2 /2)dx]+x+(x^2 /2)C_1 +C_2    v= 2.(x^2 /2)log x −2.(1/2)∫xdx+x+(x^2 /2)C_1 +C_2    v = x^2 log x−(x^2 /2)+x+(x^2 /2)C_1 +C_2    Now again Putting the value of v in equ^n (ii)    y= vx     y = x^3 log x−(x^3 /2)+x^2 +(x^3 /2)C_1 +C_2 x .
3.x2d2ydx23xdydx+3y=x2(2x1)Secondorderlineardifferentialeqnwithvariablecoefficientd2ydx23xdydx+3x2y=2x1..(i)P=3x,Q=3x2andR=2x1IfP+Qx=0thenPartofCFu=x3x+3x2x=0forcompletesoln:y=uvy=vx.(ii)Weknowtheform:d2vdx2+(P+2u.dudx)dvdx=Rud2vdx2+(3x+2x.dxdx)dvdx=2x1xd2vdx21x.dvdx=2x1xChangetolinearform,Put,dvdx=td2vdx2=dtdxdtdx1xt=2x1xNow,IF=ePdx=e1xdx=elogxIF=elogx1=1xt.1x=1x.2x1xdx+C1tx=(2xx2)dx+C1t.1x=2logxx1(1)+C1t.1x=2logx+1x+C1t=2xlogx+1+C1xdvdx=2xlogx+1+C1xdv=2xlogxdx+dx+C1xdx+C2v=2[logx.x221x.x22dx]+x+x22C1+C2v=2.x22logx2.12xdx+x+x22C1+C2v=x2logxx22+x+x22C1+C2NowagainPuttingthevalueofvinequn(ii)y=vxy=x3logxx32+x2+x32C1+C2x.
Commented by niroj last updated on 18/May/20
it's outstanding��������
Commented by peter frank last updated on 24/May/20
good
goodgood

Leave a Reply

Your email address will not be published. Required fields are marked *