Menu Close

1-find-without-l-hopital-lim-x-0-2-x-1-x-1-1-3-x-1-1-4-x-2-prove-that-the-general-solution-for-tbe-differential-equation-1-y-2-1-x-2-dy-dx-0-is-y-k-x-1-kx-k-is




Question Number 84333 by M±th+et£s last updated on 11/Mar/20
1)find without l′hopital  lim_(x→0) ((2(√(x+1))−((x+1))^(1/3) −((x+1))^(1/4) )/x)    2) prove that the general solution for tbe differential equation  (1+y^2 )+(1+x^2 )((dy/dx))=0 is y=((k−x)/(1+kx)),k is a constant  then find the special solution if y=(2/(3 )) when x=1
$$\left.\mathrm{1}\right){find}\:{without}\:{l}'{hopital} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {{lim}}\frac{\mathrm{2}\sqrt{{x}+\mathrm{1}}−\sqrt[{\mathrm{3}}]{{x}+\mathrm{1}}−\sqrt[{\mathrm{4}}]{{x}+\mathrm{1}}}{{x}} \\ $$$$ \\ $$$$\left.\mathrm{2}\right)\:{prove}\:{that}\:{the}\:{general}\:{solution}\:{for}\:{tbe}\:{differential}\:{equation} \\ $$$$\left(\mathrm{1}+{y}^{\mathrm{2}} \right)+\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\frac{{dy}}{{dx}}\right)=\mathrm{0}\:{is}\:{y}=\frac{{k}−{x}}{\mathrm{1}+{kx}},{k}\:{is}\:{a}\:{constant} \\ $$$${then}\:{find}\:{the}\:{special}\:{solution}\:{if}\:{y}=\frac{\mathrm{2}}{\mathrm{3}\:}\:{when}\:{x}=\mathrm{1} \\ $$
Answered by mind is power last updated on 11/Mar/20
(1+x)^a =1+ax+o(x)⇒  ((2(√(1+x))−((1+x))^(1/3) −((x+1))^(1/4) )/x)=((2(1+(x/2)+o(x))−(1+(x/3)+o(x))−(1+(x/4)+o(x)))/x)  =((((5x)/(12))+o(x))/x)=(5/(12))+o(1)→(5/(12))
$$\left(\mathrm{1}+{x}\right)^{{a}} =\mathrm{1}+{ax}+{o}\left({x}\right)\Rightarrow \\ $$$$\frac{\mathrm{2}\sqrt{\mathrm{1}+{x}}−\sqrt[{\mathrm{3}}]{\mathrm{1}+{x}}−\sqrt[{\mathrm{4}}]{{x}+\mathrm{1}}}{{x}}=\frac{\mathrm{2}\left(\mathrm{1}+\frac{{x}}{\mathrm{2}}+{o}\left({x}\right)\right)−\left(\mathrm{1}+\frac{{x}}{\mathrm{3}}+{o}\left({x}\right)\right)−\left(\mathrm{1}+\frac{{x}}{\mathrm{4}}+{o}\left({x}\right)\right)}{{x}} \\ $$$$=\frac{\frac{\mathrm{5}{x}}{\mathrm{12}}+{o}\left({x}\right)}{{x}}=\frac{\mathrm{5}}{\mathrm{12}}+{o}\left(\mathrm{1}\right)\rightarrow\frac{\mathrm{5}}{\mathrm{12}} \\ $$$$ \\ $$
Answered by mind is power last updated on 11/Mar/20
⇒(dy/(1+y^2 ))=((−dx)/(1+x^2 ))  ⇒arctan(y)=−arctan(x)+c⇒  y=tg(c−arctan(x))=((tg(c)−tg(arctan(x)))/(1+tg(c)tg(arctan(x))))  ⇒y=((tg(c)−x)/(1+tg(c).x)),let tg(c)=k⇒  y=((k−x)/(1+kx))  x=1⇒y=(2/3)⇒(2/3)(1+k)=k−1⇒k=5  y(x)=((5−x)/(1+5x))
$$\Rightarrow\frac{{dy}}{\mathrm{1}+{y}^{\mathrm{2}} }=\frac{−{dx}}{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$$$\Rightarrow{arctan}\left({y}\right)=−{arctan}\left({x}\right)+{c}\Rightarrow \\ $$$${y}={tg}\left({c}−{arctan}\left({x}\right)\right)=\frac{{tg}\left({c}\right)−{tg}\left({arctan}\left({x}\right)\right)}{\mathrm{1}+{tg}\left({c}\right){tg}\left({arctan}\left({x}\right)\right)} \\ $$$$\Rightarrow{y}=\frac{{tg}\left({c}\right)−{x}}{\mathrm{1}+{tg}\left({c}\right).{x}},{let}\:{tg}\left({c}\right)={k}\Rightarrow \\ $$$${y}=\frac{{k}−{x}}{\mathrm{1}+{kx}} \\ $$$${x}=\mathrm{1}\Rightarrow{y}=\frac{\mathrm{2}}{\mathrm{3}}\Rightarrow\frac{\mathrm{2}}{\mathrm{3}}\left(\mathrm{1}+{k}\right)={k}−\mathrm{1}\Rightarrow{k}=\mathrm{5} \\ $$$${y}\left({x}\right)=\frac{\mathrm{5}−{x}}{\mathrm{1}+\mathrm{5}{x}} \\ $$
Commented by M±th+et£s last updated on 11/Mar/20
god bless you sir
$${god}\:{bless}\:{you}\:{sir} \\ $$
Answered by behi83417@gmail.com last updated on 11/Mar/20
x+1=t^(12) ,x→0⇒t→1  L=lim_(t→1) ((2t^6 −t^4 −t^3 )/(t^(12) −1))=lim_(t→1) ((12t^5 −4t^3 −3t^2 )/(12t^(11) ))=  =((12−4−3)/(12))=(5/(12))   .■
$$\mathrm{x}+\mathrm{1}=\mathrm{t}^{\mathrm{12}} ,\mathrm{x}\rightarrow\mathrm{0}\Rightarrow\mathrm{t}\rightarrow\mathrm{1} \\ $$$$\mathrm{L}=\underset{\mathrm{t}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{\mathrm{2t}^{\mathrm{6}} −\mathrm{t}^{\mathrm{4}} −\mathrm{t}^{\mathrm{3}} }{\mathrm{t}^{\mathrm{12}} −\mathrm{1}}=\underset{\mathrm{t}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{\mathrm{12t}^{\mathrm{5}} −\mathrm{4t}^{\mathrm{3}} −\mathrm{3t}^{\mathrm{2}} }{\mathrm{12t}^{\mathrm{11}} }= \\ $$$$=\frac{\mathrm{12}−\mathrm{4}−\mathrm{3}}{\mathrm{12}}=\frac{\mathrm{5}}{\mathrm{12}}\:\:\:.\blacksquare \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *