Menu Close

1-find-x-1-x-1-x-dx-2-calculate-1-3-x-1-x-1-x-dx-




Question Number 41845 by maxmathsup by imad last updated on 13/Aug/18
1)find    ∫         (x/( (√(1+x)) +(√(1−x)))) dx  2) calculate  ∫_1 ^3      (x/( (√(1+x)) +(√(1−x)))) dx
$$\left.\mathrm{1}\right){find}\:\:\:\:\int\:\:\:\:\:\:\:\:\:\frac{{x}}{\:\sqrt{\mathrm{1}+{x}}\:+\sqrt{\mathrm{1}−{x}}}\:{dx} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\:\int_{\mathrm{1}} ^{\mathrm{3}} \:\:\:\:\:\frac{{x}}{\:\sqrt{\mathrm{1}+{x}}\:+\sqrt{\mathrm{1}−{x}}}\:{dx} \\ $$
Answered by MJS last updated on 13/Aug/18
∫(x/( (√(1+x))+(√(1−x))))dx=(1/2)∫(√(1+x))dx−(1/2)∫(√(1−x))dx=  =(1/3)((√((1+x)^3 ))+(√((1−x)^3 )))+C
$$\int\frac{{x}}{\:\sqrt{\mathrm{1}+{x}}+\sqrt{\mathrm{1}−{x}}}{dx}=\frac{\mathrm{1}}{\mathrm{2}}\int\sqrt{\mathrm{1}+{x}}{dx}−\frac{\mathrm{1}}{\mathrm{2}}\int\sqrt{\mathrm{1}−{x}}{dx}= \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}\left(\sqrt{\left(\mathrm{1}+{x}\right)^{\mathrm{3}} }+\sqrt{\left(\mathrm{1}−{x}\right)^{\mathrm{3}} }\right)+{C} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *