Menu Close

1-find-x-arctan-x-dx-2-find-the-value-of-0-1-x-arctan-x-dx-




Question Number 47852 by maxmathsup by imad last updated on 15/Nov/18
1) find ∫ x arctan(x)dx  2) find the value of  ∫_0 ^1  x arctan(x)dx
1)findxarctan(x)dx2)findthevalueof01xarctan(x)dx
Commented by maxmathsup by imad last updated on 16/Nov/18
1) let A =∫  x arctan(x)dx by parts   A =(x^2 /2)arctan(x)−∫ (x^2 /2) (dx/(1+x^2 )) =(x^2 /2)arctan(x)−(1/2) ∫ ((x^2  +1−1)/(x^2  +1))dx  =(x^2 /2)arctan(x)−(x/2) +(1/2) arctan(x)+c .  2) ∫_0 ^1  x arctan(x)dx =[(x^2 /2)arctan(x)−(x/2) +((arctan(x))/2)]_0 ^1   =(π/8) −(1/2) +(π/8) =(π/4) −(1/2) .
1)letA=xarctan(x)dxbypartsA=x22arctan(x)x22dx1+x2=x22arctan(x)12x2+11x2+1dx=x22arctan(x)x2+12arctan(x)+c.2)01xarctan(x)dx=[x22arctan(x)x2+arctan(x)2]01=π812+π8=π412.

Leave a Reply

Your email address will not be published. Required fields are marked *