Question Number 82877 by M±th+et£s last updated on 25/Feb/20
$$\left.\mathrm{1}\right){find}\:{xy}\in{R} \\ $$$$\left.\mathrm{2}\right){find}\:{x},{y}\in{Z} \\ $$$$\left({x}+\mathrm{2}{yi}\right)^{\mathrm{6}} =\mathrm{8}{i} \\ $$
Commented by mr W last updated on 25/Feb/20
$${let}\:{z}={x}+\mathrm{2}{yi} \\ $$$${z}^{\mathrm{6}} =\mathrm{8}{i}=\left(\sqrt{\mathrm{2}}\right)^{\mathrm{6}} {e}^{\frac{\pi}{\mathrm{2}}{i}} \\ $$$$\Rightarrow{z}=\sqrt{\mathrm{2}}{e}^{\left(\frac{\pi}{\mathrm{12}}+\frac{{k}\pi}{\mathrm{3}}\right){i}} \:\:\left({k}=\mathrm{0},\mathrm{1},\mathrm{2},…,\mathrm{5}\right) \\ $$$${k}=\mathrm{0}: \\ $$$${z}=\sqrt{\mathrm{2}}{e}^{\left(\frac{\pi}{\mathrm{12}}\right){i}} =\frac{\sqrt{\mathrm{3}}+\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{3}}−\mathrm{1}}{\mathrm{2}}{i} \\ $$$${x}=\frac{\sqrt{\mathrm{3}}+\mathrm{1}}{\mathrm{2}} \\ $$$${y}=\frac{\sqrt{\mathrm{3}}−\mathrm{1}}{\mathrm{4}} \\ $$$$ \\ $$$${k}=\mathrm{1}: \\ $$$${z}=\sqrt{\mathrm{2}}{e}^{\left(\frac{\pi}{\mathrm{12}}+\frac{\pi}{\mathrm{3}}\right){i}} =\frac{\sqrt{\mathrm{3}}−\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{3}}+\mathrm{1}}{\mathrm{2}}{i} \\ $$$${x}=\frac{\sqrt{\mathrm{3}}−\mathrm{1}}{\mathrm{2}} \\ $$$${y}=\frac{\sqrt{\mathrm{3}}+\mathrm{1}}{\mathrm{4}} \\ $$$$ \\ $$$${k}=\mathrm{2}: \\ $$$${z}=\sqrt{\mathrm{2}}{e}^{\left(\frac{\pi}{\mathrm{12}}+\frac{\mathrm{2}\pi}{\mathrm{3}}\right){i}} =−\mathrm{1}+{i} \\ $$$${x}=−\mathrm{1} \\ $$$${y}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$ \\ $$$${k}=\mathrm{3}: \\ $$$${z}=\sqrt{\mathrm{2}}{e}^{\left(\frac{\pi}{\mathrm{12}}+\frac{\mathrm{3}\pi}{\mathrm{3}}\right){i}} =\frac{−\sqrt{\mathrm{3}}−\mathrm{1}}{\mathrm{2}}+\frac{−\sqrt{\mathrm{3}}+\mathrm{1}}{\mathrm{2}}{i} \\ $$$${x}=−\frac{\sqrt{\mathrm{3}}+\mathrm{1}}{\mathrm{2}} \\ $$$${y}=−\frac{\sqrt{\mathrm{3}}−\mathrm{1}}{\mathrm{4}} \\ $$$$ \\ $$$${k}=\mathrm{4}: \\ $$$${z}=\sqrt{\mathrm{2}}{e}^{\left(\frac{\pi}{\mathrm{12}}+\frac{\mathrm{4}\pi}{\mathrm{3}}\right){i}} =\frac{−\sqrt{\mathrm{3}}+\mathrm{1}}{\mathrm{2}}+\frac{−\sqrt{\mathrm{3}}−\mathrm{1}}{\mathrm{2}}{i} \\ $$$${x}=−\frac{\sqrt{\mathrm{3}}−\mathrm{1}}{\mathrm{2}} \\ $$$${y}=−\frac{\sqrt{\mathrm{3}}+\mathrm{1}}{\mathrm{4}} \\ $$$$ \\ $$$${k}=\mathrm{5}: \\ $$$${z}=\sqrt{\mathrm{2}}{e}^{\left(\frac{\pi}{\mathrm{12}}+\frac{\mathrm{5}\pi}{\mathrm{3}}\right){i}} =\mathrm{1}−{i} \\ $$$${x}=\mathrm{1} \\ $$$${y}=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$ \\ $$$${for}\:{x},{y}\:\in\mathbb{C} \\ $$$${x}+\mathrm{2}{yi}={z} \\ $$$${x}\:{and}\:{y}\:{can}\:{not}\:{be}\:{uniquely}\:{determined}. \\ $$
Answered by mind is power last updated on 25/Feb/20
$$\Rightarrow\left({x}−\mathrm{2}{yi}\right)^{\mathrm{6}} =−\mathrm{8}{i} \\ $$$$\Rightarrow\left({x}^{\mathrm{2}} +\mathrm{4}{y}^{\mathrm{2}} \right)^{\mathrm{6}} =\mathrm{64} \\ $$$$\Rightarrow{x}^{\mathrm{2}} +\mathrm{4}{y}^{\mathrm{2}} =\mathrm{2} \\ $$$$\Rightarrow{x}=\sqrt{\mathrm{2}}{cos}\left(\theta\right) \\ $$$${y}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}{sin}\left(\theta\right) \\ $$$$\theta\in\left[\mathrm{0},\mathrm{2}\pi\right] \\ $$$$\Rightarrow\mathrm{8}\left({e}^{{i}\mathrm{6}\theta} \right)=\mathrm{8}{i} \\ $$$$\Rightarrow\mathrm{6}\theta=\frac{\pi}{\mathrm{2}}+\mathrm{2}{k}\pi\Rightarrow\theta\in\frac{\pi}{\mathrm{12}}+\frac{{k}\pi}{\mathrm{3}},{k}\in\left\{\mathrm{0},……\mathrm{5}\right\} \\ $$$${x}=\sqrt{\mathrm{2}}{cos}\left(\theta\right),{y}=\frac{{sin}\left(\theta\right)}{\:\sqrt{\mathrm{2}}},\theta\in\left\{\frac{\pi}{\mathrm{12}}+\frac{{k}\pi}{\mathrm{3}},\mathrm{0}\leqslant{k}\leqslant\mathrm{5}\right\} \\ $$$$ \\ $$