Question Number 97800 by abdomathmax last updated on 09/Jun/20

Answered by niroj last updated on 09/Jun/20
![(3).I= ∫_0 ^1 (dx/( (√(x^2 −x+3)))) = ∫_0 ^( 1) (1/( (√(x^2 −2.x.(1/2)+(1/4)−(1/4)+3))))dx = ∫_0 ^1 (1/( (√((x−(1/2))^2 −(((1−12)/4))))))dx = ∫_0 ^1 (1/( (√((x−(1/2))^2 +((( (√(11)))/2))^2 ))))dx Put ,x−(1/2)=t dx=dt if x=1, t=(1/2) if x= 0, t=−(1/2) = ∫_(−(1/2)) ^(1/2) (( 1)/( (√((t)^2 +(((√(11))/2))^2 ))))dt = [log (t+(√(t^2 +((11)/4))) )]^(1/2) _(−(1/2)) = {log ((1/2)+(√((1/4)+((11)/4))) )−log(−(1/2)+(√((1/4)+((11)/4))) )} = log(((1/2)+((2(√3))/2))/(−(1/2)+((2(√3))/2)))= log (( (√3)+ (1/2))/( (√3)− (1/2))) = log ((2(√3) +1)/( 2(√3) −1)) //.](https://www.tinkutara.com/question/Q97813.png)
Commented by mathmax by abdo last updated on 09/Jun/20

Commented by niroj last updated on 09/Jun/20
you welcome sir����������
Answered by 1549442205 last updated on 10/Jun/20

Commented by mathmax by abdo last updated on 11/Jun/20

Answered by mathmax by abdo last updated on 11/Jun/20
![1) we hsve x^2 −x+a =x^2 −2x×(1/2) +(1/4) +a−(1/4) =(x−(1/2))^2 +((4a−1)/4) so we do the changement x−(1/2) =((√(4a−1))/2)t ⇒ f(a) =∫_(−(1/( (√(4a−1))))) ^(1/( (√(4a−1)))) ((√(4a−1))/2)(√(1+t^2 ))((√(4a−1))/2)dt =((4a−1)/2) ∫_0 ^(1/( (√(4a−1)))) (√(1+t^2 ))dt =_(t =shu) ∫_0 ^(argsh((1/( (√(4a−1)))))) chu chu du =(1/2)∫_0 ^(argsh((1/( (√(4a−1)))))) (1+ch(2u))du =(1/2) argsh((1/( (√(4a−1))))) +(1/4) [sh(2u)]_0 ^(ln((1/( (√(4a−1))))+(√(1+(1/(4a−1)))))) =(1/2)ln((1/( (√(4a−1)))) +(√(1+(1/(4a−1))))) +(1/8)[ e^(2u) −e^(−2u) ]_0 ^(ln((1/( (√(4a−1))))+((2(√a))/( (√(4a−1)))))) =(1/2)ln((1/( (√(4a−1)))) +((2(√a))/( (√(4a−1))))) +(1/8){ (((1+2(√a))/( (√(4a−1)))))^2 −(((√(4a−1))/(1+2(√a))))^2 } f(a)=(1/2)ln(((1+2(√a))/( (√(4a−1))))) +(1/8){ (((1+2(√a))^2 )/(4a−1))−((4a−1)/((1+2(√a))^2 ))}](https://www.tinkutara.com/question/Q98009.png)