Menu Close

1-findf-a-0-1-x-2-x-a-dx-with-a-gt-1-2-2-explicite-g-a-0-1-dx-x-2-x-a-3-calculate-0-1-dx-x-2-x-3-




Question Number 97800 by abdomathmax last updated on 09/Jun/20
1) findf(a)= ∫_0 ^1 (√(x^2 −x+a))dx     with a>(1/2)  2)explicite g(a) =∫_0 ^1  (dx/( (√(x^2 −x+a))))   3) calculate ∫_0 ^1  (dx/( (√(x^2 −x +3))))
1)findf(a)=01x2x+adxwitha>122)expliciteg(a)=01dxx2x+a3)calculate01dxx2x+3
Answered by niroj last updated on 09/Jun/20
(3).I= ∫_0 ^1   (dx/( (√(x^2 −x+3))))      = ∫_0 ^( 1)  (1/( (√(x^2 −2.x.(1/2)+(1/4)−(1/4)+3))))dx  = ∫_0 ^1   (1/( (√((x−(1/2))^2 −(((1−12)/4))))))dx  = ∫_0 ^1   (1/( (√((x−(1/2))^2 +((( (√(11)))/2))^2 ))))dx   Put ,x−(1/2)=t      dx=dt    if x=1, t=(1/2)   if x= 0, t=−(1/2)   = ∫_(−(1/2)) ^(1/2)  (( 1)/( (√((t)^2 +(((√(11))/2))^2 ))))dt   = [log (t+(√(t^2 +((11)/4)))   )]^(1/2) _(−(1/2))   = {log ((1/2)+(√((1/4)+((11)/4)))   )−log(−(1/2)+(√((1/4)+((11)/4)))  )}  = log(((1/2)+((2(√3))/2))/(−(1/2)+((2(√3))/2)))= log ((   (√3)+ (1/2))/(   (√3)− (1/2)))  = log  ((2(√3)  +1)/( 2(√3) −1)) //.
(3).I=01dxx2x+3=011x22.x.12+1414+3dx=011(x12)2(1124)dx=011(x12)2+(112)2dxPut,x12=tdx=dtifx=1,t=12ifx=0,t=12=12121(t)2+(112)2dtMissing \left or extra \right={log(12+14+114)log(12+14+114)}=log12+23212+232=log3+12312=log23+1231//.
Commented by mathmax by abdo last updated on 09/Jun/20
thank you sir.
thankyousir.
Commented by niroj last updated on 09/Jun/20
you welcome sir����������
Answered by 1549442205 last updated on 10/Jun/20
1)∫_0 ^1 (√(x^2 −x+a)) dx=∫_0 ^1 (√((x−(1/2))^2 +a−(1/4) )) dx=∫_0 ^1 (√(u^2 +m )) du(with u=x−(1/2),m=a−(1/4))  Putting (m/u^2 )+1=v^2 ⇒((−mdu)/u^3 )=vdv.We get  F=∫((−vu^3 ×uv)/m)dv⇒(F/m)=−∫((v^2 mdv)/((v^2 −1)^2 ))=−(1/4)∫(((2v−1)/(v^2 −2v+1))+((2v+1)/(v^2 +2v+1)))dv  =−(1/4)∫(((d(v^2 −2v+1))/(v^2 −2v+1))−∫((d(v^2 +2v+1))/(v^2 +2v+1))−(1/4)∫(dv/((v−1)^2 ))+(1/4)∫(dv/((v+1)^2 ))  =((−1)/4)ln∣v^2 −2v+1∣−(1/4)ln∣v^2 +2v+1∣  +(1/(4(v−1)))−(1/(4(v+1)))=−(1/4)ln(v^2 −1)^2 +(1/(2(v^2 −1)))  Hence,F=((−m)/2)ln(v^2 −1)+(m/(2(v^2 −1)))=(((1/4)−a)/2)ln∣(((1/4)−a)/((x−(1/2))^2 ))∣+((a−(1/4))/(2(x−(1/2))^2 ))  ∫_0 ^1 (√(x^2 −x+a)) dx=F(1)−F(0)=0 since F(1)=F(0)  2/∫_0 ^1 (dx/( (√(x^2 −x+a)) ))=∫_0 ^1 ((d(x−(1/2)))/( (√((x−(1/2))^2 +((4a−1)/4)))))=ln∣x−(1/2)+(√(x^2 −x+a)) ∣_0 ^1 =  =ln∣(1/2)+(√a) ∣−ln∣((−1)/2)+(√(a )) ∣=ln∣((1+2(√a))/(2(√a)−1))∣
1)01x2x+adx=01(x12)2+a14dx=01u2+mdu(withu=x12,m=a14)Puttingmu2+1=v2mduu3=vdv.WegetF=vu3×uvmdvFm=v2mdv(v21)2=14(2v1v22v+1+2v+1v2+2v+1)dv=14(d(v22v+1)v22v+1d(v2+2v+1)v2+2v+114dv(v1)2+14dv(v+1)2=14lnv22v+114lnv2+2v+1+14(v1)14(v+1)=14ln(v21)2+12(v21)Hence,F=m2ln(v21)+m2(v21)=14a2ln14a(x12)2+a142(x12)201x2x+adx=F(1)F(0)=0sinceF(1)=F(0)2/01dxx2x+a=01d(x12)(x12)2+4a14=lnx12+x2x+a01==ln12+aln12+a∣=ln1+2a2a1
Commented by mathmax by abdo last updated on 11/Jun/20
thanks sir.
thankssir.
Answered by mathmax by abdo last updated on 11/Jun/20
1) we hsve x^2 −x+a =x^2 −2x×(1/2) +(1/4) +a−(1/4) =(x−(1/2))^2  +((4a−1)/4)  so we do the changement  x−(1/2) =((√(4a−1))/2)t ⇒  f(a) =∫_(−(1/( (√(4a−1))))) ^(1/( (√(4a−1)))) ((√(4a−1))/2)(√(1+t^2 ))((√(4a−1))/2)dt =((4a−1)/2) ∫_0 ^(1/( (√(4a−1))))  (√(1+t^2 ))dt  =_(t =shu)      ∫_0 ^(argsh((1/( (√(4a−1))))))  chu chu du =(1/2)∫_0 ^(argsh((1/( (√(4a−1)))))) (1+ch(2u))du  =(1/2) argsh((1/( (√(4a−1))))) +(1/4) [sh(2u)]_0 ^(ln((1/( (√(4a−1))))+(√(1+(1/(4a−1))))))   =(1/2)ln((1/( (√(4a−1)))) +(√(1+(1/(4a−1)))))  +(1/8)[ e^(2u) −e^(−2u) ]_0 ^(ln((1/( (√(4a−1))))+((2(√a))/( (√(4a−1))))))   =(1/2)ln((1/( (√(4a−1)))) +((2(√a))/( (√(4a−1))))) +(1/8){ (((1+2(√a))/( (√(4a−1)))))^2 −(((√(4a−1))/(1+2(√a))))^2 }  f(a)=(1/2)ln(((1+2(√a))/( (√(4a−1))))) +(1/8){  (((1+2(√a))^2 )/(4a−1))−((4a−1)/((1+2(√a))^2 ))}
1)wehsvex2x+a=x22x×12+14+a14=(x12)2+4a14sowedothechangementx12=4a12tf(a)=14a114a14a121+t24a12dt=4a12014a11+t2dt=t=shu0argsh(14a1)chuchudu=120argsh(14a1)(1+ch(2u))du=12argsh(14a1)+14[sh(2u)]0ln(14a1+1+14a1)=12ln(14a1+1+14a1)+18[e2ue2u]0ln(14a1+2a4a1)=12ln(14a1+2a4a1)+18{(1+2a4a1)2(4a11+2a)2}f(a)=12ln(1+2a4a1)+18{(1+2a)24a14a1(1+2a)2}

Leave a Reply

Your email address will not be published. Required fields are marked *