Menu Close

1-for-x-gt-0-find-the-value-of-m-to-1-log-5-x-2-1-log-5-mx-2-4x-m-verify-x-




Question Number 152208 by SOMEDAVONG last updated on 26/Aug/21
1.for ∀x>0.find the value of  m to   1+log_5 (x^2 +1)≥log_5 (mx^2 +4x+m) verify ∀x.
1.forx>0.findthevalueofmto1+log5(x2+1)log5(mx2+4x+m)verifyx.
Answered by Rasheed.Sindhi last updated on 26/Aug/21
1+log_5 (x^2 +1)≥log_5 (mx^2 +4x+m)   log_5 5 +log_5 (x^2 +1)≥log_5 (mx^2 +4x+m)   log_5 ( 5(x^2 +1) )≥log_5 (mx^2 +4x+m)   5(x^2 +1)≥mx^2 +4x+m  (5−m)x^2 −4x+5−m≥0  Continue....
1+log5(x2+1)log5(mx2+4x+m)log55+log5(x2+1)log5(mx2+4x+m)log5(5(x2+1))log5(mx2+4x+m)5(x2+1)mx2+4x+m(5m)x24x+5m0Continue.
Commented by SOMEDAVONG last updated on 26/Aug/21
Thanks sir
Thankssir
Commented by 1549442205PVT last updated on 26/Aug/21
Put f(x)=(5−m)x^2 −4x+5−m  i)For m=5 we get −4x≥0⇔x≤0,so it is rejected  ii)For m<5 f(x)≥0∀x>0 if and only if    [_(f(x)have has two roots x_1 ≤x_2 ≤0(2)) ^(△′=4+m(5−m)<0(1))   (1)⇔−m^2 +5m+4<0⇔m^2 −5m−4>0  ⇔m∈(−∞,((5−(√(41)))/2))∪(((5+(√(41)))/2),∞)  Combining to the condition m<5 we get  m∈(−∞,((5−(√(41)))/2))  (2)⇔ { ((△′≥0)),((((x_1 +x_2 )/2)=(2/(5−m))≤0)) :}⇔ { ((m^2 −5m−4≤0)),((m≥5 this is contradiction to the hypothesis that m<5)) :}  .Hence this case don′t occur  ii)For m>5 don′t exist m
Putf(x)=(5m)x24x+5mi)Form=5weget4x0x0,soitisrejectedii)Form<5f(x)0x>0ifandonlyif[f(x)havehastworootsx1x20(2)=4+m(5m)<0(1)(1)m2+5m+4<0m25m4>0m(,5412)(5+412,)Combiningtotheconditionm<5wegetm(,5412)(2){0x1+x22=25m0{m25m40m5thisiscontradictiontothehypothesisthatm<5.Hencethiscasedontoccurii)Form>5dontexistm

Leave a Reply

Your email address will not be published. Required fields are marked *