Question Number 33335 by prof Abdo imad last updated on 14/Apr/18
$$\left.\mathrm{1}\right)\:{give}\:?{D}_{{n}−\mathrm{1}} \left({o}\right)\:\:{for}\:{f}\left({x}\right)=\:\frac{\mathrm{1}}{{x}+\mathrm{2}} \\ $$$$\left.\mathrm{2}\right)\:{drcompose}\:{inside}\:{R}\left({x}\right)\:{the}\:{fraction} \\ $$$${F}\left({x}\right)\:=\:\frac{\mathrm{1}}{{x}^{{n}} \left({x}+\mathrm{2}\right)} \\ $$
Commented by prof Abdo imad last updated on 25/Apr/18
$${we}\:{have}\:{f}\left({x}\right)\:=\:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\frac{{f}^{\left({k}\right)} \left(\mathrm{0}\right)}{{k}!}\:{x}^{{k}} \:+\frac{{x}^{{n}} }{{n}!}\:\xi\left({x}\right)\:{with} \\ $$$$\xi\left({x}\right)_{{x}\rightarrow\mathrm{0}} \rightarrow\mathrm{0}\:\:{but}\:{we}\:{have}\:{f}^{\left({k}\right)} \left({x}\right)=\frac{\left(−\mathrm{1}\right)^{{k}} {k}!}{\left({x}+\mathrm{2}\right)^{{k}+\mathrm{1}} }\:\Rightarrow \\ $$$${f}^{\left({k}\right)} \left(\mathrm{0}\right)\:=\:\frac{\left(−\mathrm{1}\right)^{{k}} \:{k}!}{\mathrm{2}^{{k}+\mathrm{1}} }\:\Rightarrow \\ $$$${f}\left({x}\right)=\:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:\:\frac{\left(−\mathrm{1}\right)^{{k}} }{\mathrm{2}^{{k}+\mathrm{1}} }\:{x}^{{k}} \:\:+\:\frac{{x}^{{n}} }{{n}!}\:\xi\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{F}\left({x}\right)\:=\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\frac{\lambda_{{k}} }{{x}^{{k}} }\:+\:\frac{{a}}{{x}+\mathrm{2}} \\ $$$${a}\:=\:\:{lim}_{{x}\rightarrow−\mathrm{2}} \left({x}+\mathrm{2}\right){F}\left({x}\right)\:=\:\frac{\mathrm{1}}{\left(−\mathrm{2}\right)^{{n}} }\:=\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}^{{n}} \left({x}+\mathrm{2}\right)}\:\Rightarrow \\ $$$${F}\left({x}\right)=\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\frac{\lambda_{{k}} }{{x}^{{k}} }\:\:+\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}^{{n}} \left({x}+\mathrm{2}\right)}\:\:=\:\sum_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \:\:\frac{\lambda_{{k}} }{{x}^{{k}} }\:\:+\:\frac{\lambda_{{n}} }{{x}^{{n}} }\:+\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}^{{n}} \left({x}+\mathrm{2}\right)} \\ $$$$\lambda_{{n}} \:={lim}_{{x}\rightarrow\mathrm{0}} \:{x}^{{n}} \:{F}\left({x}\right)=\:\frac{\mathrm{1}}{\mathrm{2}}\:\:{from}\:{another}\:{side} \\ $$$${F}\left({x}\right)=\:\frac{\mathrm{1}}{{x}^{{n}} }\left(\:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:\frac{\left(−\mathrm{1}\right)^{{k}} }{\mathrm{2}^{{k}} }\:{x}^{{k}} \:\:+\frac{{x}^{{n}} }{{n}!}\:\xi\left({x}\right)\right) \\ $$$$=\:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:\frac{\left(−\mathrm{1}\right)^{{k}} }{\mathrm{2}^{{k}} \:{x}^{{n}−{k}} }\:\:+\:\frac{\mathrm{1}}{{n}!}\:\xi\left({x}\right)\:{ch}.\:{of}\:{indice}\:{n}−{k}={p} \\ $$$${F}\left({x}\right)=\:\sum_{{p}=\mathrm{1}} ^{{n}} \:\:\frac{\left(−\mathrm{1}\right)^{{n}−{p}} }{\mathrm{2}^{{n}−{p}} \:{x}^{{p}} }\:\:+\:\frac{\mathrm{1}}{{n}!}\:\xi\left({x}\right) \\ $$$$=\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\:\frac{\left(−\mathrm{1}\right)^{{n}−{k}} }{\mathrm{2}^{{n}−{k}} \:{x}^{{k}} }\:\:+\frac{\mathrm{1}}{{n}!}\:\xi\left({x}\right)\:\Rightarrow\:\lambda_{{k}} \:=\:\frac{\left(−\mathrm{1}\right)^{{n}−{k}} }{\mathrm{2}^{{n}−{k}} }\:{and} \\ $$$${F}\left({x}\right)=\:\sum_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} \:\:\:\:\frac{\left(−\mathrm{1}\right)^{{n}−{k}} }{\mathrm{2}^{{n}−{k}} \:\:{x}^{{k}} }\:\:+\frac{\mathrm{1}}{\mathrm{2}{x}^{{n}} }\:\:+\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}^{{n}} \left({x}+\mathrm{2}\right)}\:. \\ $$$$ \\ $$