Menu Close

1-give-D-n-1-o-for-f-x-1-x-2-2-drcompose-inside-R-x-the-fraction-F-x-1-x-n-x-2-




Question Number 33335 by prof Abdo imad last updated on 14/Apr/18
1) give ?D_(n−1) (o)  for f(x)= (1/(x+2))  2) drcompose inside R(x) the fraction  F(x) = (1/(x^n (x+2)))
1)give?Dn1(o)forf(x)=1x+22)drcomposeinsideR(x)thefractionF(x)=1xn(x+2)
Commented by prof Abdo imad last updated on 25/Apr/18
we have f(x) = Σ_(k=0) ^(n−1)  ((f^((k)) (0))/(k!)) x^k  +(x^n /(n!)) ξ(x) with  ξ(x)_(x→0) →0  but we have f^((k)) (x)=(((−1)^k k!)/((x+2)^(k+1) )) ⇒  f^((k)) (0) = (((−1)^k  k!)/2^(k+1) ) ⇒  f(x)= Σ_(k=0) ^(n−1)    (((−1)^k )/2^(k+1) ) x^k   + (x^n /(n!)) ξ(x)  2) F(x) = Σ_(k=1) ^n   (λ_k /x^k ) + (a/(x+2))  a =  lim_(x→−2) (x+2)F(x) = (1/((−2)^n )) =(((−1)^n )/(2^n (x+2))) ⇒  F(x)= Σ_(k=1) ^n   (λ_k /x^k )  + (((−1)^n )/(2^n (x+2)))  = Σ_(k=1) ^(n−1)   (λ_k /x^k )  + (λ_n /x^n ) +(((−1)^n )/(2^n (x+2)))  λ_n  =lim_(x→0)  x^n  F(x)= (1/2)  from another side  F(x)= (1/x^n )( Σ_(k=0) ^(n−1)   (((−1)^k )/2^k ) x^k   +(x^n /(n!)) ξ(x))  = Σ_(k=0) ^(n−1)   (((−1)^k )/(2^k  x^(n−k) ))  + (1/(n!)) ξ(x) ch. of indice n−k=p  F(x)= Σ_(p=1) ^n   (((−1)^(n−p) )/(2^(n−p)  x^p ))  + (1/(n!)) ξ(x)  = Σ_(k=1) ^n    (((−1)^(n−k) )/(2^(n−k)  x^k ))  +(1/(n!)) ξ(x) ⇒ λ_k  = (((−1)^(n−k) )/2^(n−k) ) and  F(x)= Σ_(k=1) ^(n−1)     (((−1)^(n−k) )/(2^(n−k)   x^k ))  +(1/(2x^n ))  +(((−1)^n )/(2^n (x+2))) .
wehavef(x)=k=0n1f(k)(0)k!xk+xnn!ξ(x)withξ(x)x00butwehavef(k)(x)=(1)kk!(x+2)k+1f(k)(0)=(1)kk!2k+1f(x)=k=0n1(1)k2k+1xk+xnn!ξ(x)2)F(x)=k=1nλkxk+ax+2a=limx2(x+2)F(x)=1(2)n=(1)n2n(x+2)F(x)=k=1nλkxk+(1)n2n(x+2)=k=1n1λkxk+λnxn+(1)n2n(x+2)λn=limx0xnF(x)=12fromanothersideF(x)=1xn(k=0n1(1)k2kxk+xnn!ξ(x))=k=0n1(1)k2kxnk+1n!ξ(x)ch.ofindicenk=pF(x)=p=1n(1)np2npxp+1n!ξ(x)=k=1n(1)nk2nkxk+1n!ξ(x)λk=(1)nk2nkandF(x)=k=1n1(1)nk2nkxk+12xn+(1)n2n(x+2).

Leave a Reply

Your email address will not be published. Required fields are marked *