Menu Close

1-Given-E-C-0-1-R-are-mapping-set-0-1-R-a-Show-that-E-is-vector-space-b-For-f-E-let-f-1-0-1-f-x-dx-Show-that-E-1-are-normed-space-Helpe-me-please-




Question Number 120524 by SOMEDAVONG last updated on 01/Nov/20
1/.Given E=C([0,1],R) are mapping set [0,1]→R.  (a). Show that E is vector space.  (b).For  f∈E ,let ∣∣f∣∣_1 =∫_0 ^1 ∣f(x)∣dx .   Show that (E,∣∣.∣∣_1 ) are normed space.    (Helpe me please)
$$\mathrm{1}/.\mathrm{Given}\:\mathrm{E}=\mathrm{C}\left(\left[\mathrm{0},\mathrm{1}\right],\mathbb{R}\right)\:\mathrm{are}\:\mathrm{mapping}\:\mathrm{set}\:\left[\mathrm{0},\mathrm{1}\right]\rightarrow\mathbb{R}. \\ $$$$\left(\mathrm{a}\right).\:\mathrm{Show}\:\mathrm{that}\:\mathrm{E}\:\mathrm{is}\:\mathrm{vector}\:\mathrm{space}. \\ $$$$\left(\mathrm{b}\right).\mathrm{For}\:\:\mathrm{f}\in\mathrm{E}\:,\mathrm{let}\:\mid\mid\mathrm{f}\mid\mid_{\mathrm{1}} =\int_{\mathrm{0}} ^{\mathrm{1}} \mid\mathrm{f}\left(\mathrm{x}\right)\mid\mathrm{dx}\:. \\ $$$$\:\mathrm{Show}\:\mathrm{that}\:\left(\mathrm{E},\mid\mid.\mid\mid_{\mathrm{1}} \right)\:\mathrm{are}\:\mathrm{normed}\:\mathrm{space}. \\ $$$$\:\:\left(\mathrm{Helpe}\:\mathrm{me}\:\mathrm{please}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *