1-i-1-n-j-1-n-i-j-2-i-1-n-j-i-n-1-j-3-i-1-n-2-i- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 147576 by qaz last updated on 22/Jul/21 (1)::∑ni=1∑nj=1∣i−j∣=?(2)::∑ni=1∑nj=i1j=?(3)::∑n2i=1[i]=? Answered by gsk2684 last updated on 22/Jul/21 i)∑ni=1∑nj=1∣i−j∣=0+1+2+3+…+(n−1)+1+0+1+2+…+(n−2)+2+1+0+1+…+(n−3)+……+(n−2)+(n−3)+…+1+(n−1)+(n−2)+…+0=n(0)+2(n−1)(1)+2(n−2)(2)+…2(1)(n−1)=∑n−1j=02j(n−j)=2{n∑n−1j=0j−∑n−1j=0j2}=2{n(n−1)(n−1+1)2−(n−1)(n−1+1)(2(n−1)+1)6}=2{n2(n−1)2−n(n−1)(2n−1)6}=2n(n−1)6{3n−2n+1}=n(n−1)(n+1)3∑ni=1∑nj=1∣i−j∣=n(n2−1)3ii)∑ni=1∑nj=i1j=11+12+13+…+1n+12+13+…+1n+13+…+1n+……..+1n=1+1+1+…+1∑ni=1∑nj=i1j=niii)∑n2i=1[i]=∑22−1i=121+∑32−1i=222+∑42−1i=323+…+∑n2−1i=(n−1)2(n−1)+[n2]=3(1)+5(2)+7(3)+…+(2n−1)(n−1)+n=∑n−1j=1j(2j+1)+n=∑n−1j=1(2j2+j)+n=2∑n−1j=1j2+∑n−1j=1j+n=2(n−1)(n−1+1)(2(n−1)+1)6+(n−1)(n−1+1)2+n=n(n−1)(2n−1)3+n(n−1)2+n=n{(n−1)(2n−1)3+(n−1)2+1}=n6{2(2n2−3n+1)+3(n−1)+6}=n6{4n2−6n+2+3n−3+6}=n6{4n2−3n+5}∑n2i=1[i]=n(4n2−3n+5)6 Commented by qaz last updated on 22/Jul/21 thanksalotsir Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: show-that-pi-ie-1-2-0-Next Next post: Question-82042 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.