Menu Close

1-i-1-n-j-1-n-i-j-2-i-1-n-j-i-n-1-j-3-i-1-n-2-i-




Question Number 147576 by qaz last updated on 22/Jul/21
(1)::     Σ_(i=1) ^n Σ_(j=1) ^n ∣i−j∣=?  (2)::     Σ_(i=1) ^n Σ_(j=i) ^n (1/j)=?  (3)::      Σ_(i=1) ^n^2  [(√i)]=?
(1)::ni=1nj=1ij∣=?(2)::ni=1nj=i1j=?(3)::n2i=1[i]=?
Answered by gsk2684 last updated on 22/Jul/21
i)Σ_(i=1) ^n Σ_(j=1) ^n ∣i−j∣=    0+1+2+3+...+(n−1)                                   +1+0+1+2+...+(n−2)                                   +2+1+0+1+...+(n−3)                                   +......                                   +(n−2)+(n−3)+...+1                                   +(n−1)+(n−2)+...+0                               =n(0)+2(n−1)(1)+2(n−2)(2)+...2(1)(n−1)                               =Σ_(j=0) ^(n−1) 2j(n−j)                               =2{nΣ_(j=0) ^(n−1) j−Σ_(j=0) ^(n−1) j^2 }                               =2{n(((n−1)(n−1+1))/2)−(((n−1)(n−1+1)(2(n−1)+1))/6)}                               =2{((n^2 (n−1))/2)−((n(n−1)(2n−1))/6)}                               =2((n(n−1))/6){3n−2n+1}                               =((n(n−1)(n+1))/3)  Σ_(i=1) ^n Σ_(j=1) ^n ∣i−j∣=((n(n^2 −1))/3)    ii)Σ_(i=1) ^n Σ_(j=i) ^n (1/j)=(1/1)+(1/2)+(1/3)+...+(1/n)                             +(1/2)+(1/3)+...+(1/n)                                      +(1/3)+...+(1/n)                                                +........                                                        +(1/n)                  =1+1+1+...+1   Σ_(i=1) ^n Σ_(j=i) ^n (1/j)=n    iii)Σ_(i=1) ^n^2  [(√i)]=Σ_(i=1^2 ) ^(2^2 −1) 1+Σ_(i=2^2 ) ^(3^2 −1) 2+Σ_(i=3^2 ) ^(4^2 −1) 3+...+Σ_(i=(n−1)^2 ) ^(n^2 −1) (n−1)+[(√n^2 )]               =3(1)+5(2)+7(3)+...+(2n−1)(n−1)+n              =Σ_(j=1) ^(n−1) j(2j+1)+n              =Σ_(j=1) ^(n−1) (2j^2 +j)+n              =2Σ_(j=1) ^(n−1) j^2 +Σ_(j=1) ^(n−1) j+n              =2(((n−1)(n−1+1)(2(n−1)+1))/6)+(((n−1)(n−1+1))/2)+n              =((n(n−1)(2n−1))/3)+((n(n−1))/2)+n              =n{(((n−1)(2n−1))/3)+(((n−1))/2)+1}             =(n/6){2(2n^2 −3n+1)+3(n−1)+6}             =(n/6){4n^2 −6n+2+3n−3+6}             =(n/6){4n^2 −3n+5}  Σ_(i=1) ^n^2  [(√i)]=((n(4n^2 −3n+5))/6)
i)ni=1nj=1ij∣=0+1+2+3++(n1)+1+0+1+2++(n2)+2+1+0+1++(n3)++(n2)+(n3)++1+(n1)+(n2)++0=n(0)+2(n1)(1)+2(n2)(2)+2(1)(n1)=n1j=02j(nj)=2{nn1j=0jn1j=0j2}=2{n(n1)(n1+1)2(n1)(n1+1)(2(n1)+1)6}=2{n2(n1)2n(n1)(2n1)6}=2n(n1)6{3n2n+1}=n(n1)(n+1)3ni=1nj=1ij∣=n(n21)3ii)ni=1nj=i1j=11+12+13++1n+12+13++1n+13++1n+..+1n=1+1+1++1ni=1nj=i1j=niii)n2i=1[i]=221i=121+321i=222+421i=323++n21i=(n1)2(n1)+[n2]=3(1)+5(2)+7(3)++(2n1)(n1)+n=n1j=1j(2j+1)+n=n1j=1(2j2+j)+n=2n1j=1j2+n1j=1j+n=2(n1)(n1+1)(2(n1)+1)6+(n1)(n1+1)2+n=n(n1)(2n1)3+n(n1)2+n=n{(n1)(2n1)3+(n1)2+1}=n6{2(2n23n+1)+3(n1)+6}=n6{4n26n+2+3n3+6}=n6{4n23n+5}n2i=1[i]=n(4n23n+5)6
Commented by qaz last updated on 22/Jul/21
thanks a lot sir
thanksalotsir

Leave a Reply

Your email address will not be published. Required fields are marked *