Menu Close

1-i-2020-




Question Number 127979 by bobhans last updated on 03/Jan/21
  (1+i)^(2020)  =?
(1+i)2020=?
Answered by liberty last updated on 03/Jan/21
 (1+i)^(2020)  = ((√2) ((1/( (√2) )) + (i/( (√2)))))^(2020)    = ((√2))^(2020)  (cos ((π/4))+i sin ((π/4)))^(2020)    = 2^(1010)  (cos (505π) + i sin (505π))   = 2^(1010)  (−1+0) =− 2^(1010)
(1+i)2020=(2(12+i2))2020=(2)2020(cos(π4)+isin(π4))2020=21010(cos(505π)+isin(505π))=21010(1+0)=21010
Commented by JDamian last updated on 03/Jan/21
MJS_new is right − cos(505π) is −1  cos(kπ)=(−1)^k    ∀k∈Z
MJS_newisrightcos(505π)is1cos(kπ)=(1)kkZ
Answered by MJS_new last updated on 03/Jan/21
1+i=(√2)e^(i(π/4))   (1+i)^(2020) =((√2))^(2020) e^(i((2020π)/4)) =2^(1010) e^(505πi) =−2^(1010)
1+i=2eiπ4(1+i)2020=(2)2020ei2020π4=21010e505πi=21010

Leave a Reply

Your email address will not be published. Required fields are marked *