Menu Close

1-i-3-2-2020-1-i-3-2-2020-A-A-4-




Question Number 81966 by naka3546 last updated on 17/Feb/20
(((1 + i(√3))/2) )^(2020)  +  (((1 − i(√3))/2) )^(2020)   =   A  A^4   =  ?
(1+i32)2020+(1i32)2020=AA4=?
Answered by TANMAY PANACEA last updated on 17/Feb/20
(1/2)=cos(π/3)    ((√3)/2)=sin(π/3)  (cos(π/3)+isin(π/3))^(2020) +(cos(π/3)−isin(π/3))^(2020)   (e^(i×(π/3)) )^(2020) +(e^(−i×(π/3)) )^(2020)   e^(iθ) +e^(−iθ) =2cosθ   where[θ=((2020π)/3)]  A=2cosθ  A^4 =16(cosθ)^4   now cos(((2020π)/3))  cos(2020×60)  =cos(121200)  =cos(336×360+240)  =−cos60  =((−1)/2)  so required answer is16× (((−1)/2))^4 =1
12=cosπ332=sinπ3(cosπ3+isinπ3)2020+(cosπ3isinπ3)2020(ei×π3)2020+(ei×π3)2020eiθ+eiθ=2cosθwhere[θ=2020π3]A=2cosθA4=16(cosθ)4nowcos(2020π3)cos(2020×60)=cos(121200)=cos(336×360+240)=cos60=12sorequiredansweris16×(12)4=1
Commented by naka3546 last updated on 17/Feb/20
θ = ((4π)/3)  ⇒  A = 2 cos θ = −1
θ=4π3A=2cosθ=1

Leave a Reply

Your email address will not be published. Required fields are marked *