Menu Close

1-i-4i-




Question Number 48227 by gunawan last updated on 21/Nov/18
(1−i)^(4i) =..
$$\left(\mathrm{1}−{i}\right)^{\mathrm{4}{i}} =.. \\ $$
Answered by Smail last updated on 21/Nov/18
(1−i)^(4i) =((√2)(((√2)/2)−i((√2)/2)))^(4i) =(2^(1/2) )^(4i) (e^(−((iπ)/4)) )^(4i)   =2^(2i) ×e^π =e^π ×e^(2iln(2))   =e^π (cos(2ln2)+isin(2ln2))
$$\left(\mathrm{1}−{i}\right)^{\mathrm{4}{i}} =\left(\sqrt{\mathrm{2}}\left(\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}−{i}\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\right)\right)^{\mathrm{4}{i}} =\left(\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{2}}} \right)^{\mathrm{4}{i}} \left({e}^{−\frac{{i}\pi}{\mathrm{4}}} \right)^{\mathrm{4}{i}} \\ $$$$=\mathrm{2}^{\mathrm{2}{i}} ×{e}^{\pi} ={e}^{\pi} ×{e}^{\mathrm{2}{iln}\left(\mathrm{2}\right)} \\ $$$$={e}^{\pi} \left({cos}\left(\mathrm{2}{ln}\mathrm{2}\right)+{isin}\left(\mathrm{2}{ln}\mathrm{2}\right)\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *