Menu Close

1-i-9-




Question Number 122904 by Khalmohmmad last updated on 20/Nov/20
(1+i)^9 =?
(1+i)9=?
Answered by Bird last updated on 20/Nov/20
1+i=(√2)e^((iπ)/4)  ⇒(1+i)^9  =((√2))^9  e^(((k9π)/4)i)   =2^(9/2) {cos(((9π)/4))+isin(((9π)/4))}  cos(((9π)/4))=cos(2π+(π/4))=cos((π/4))=(1/( (√2)))  sin(((9π)/4))=sin(2π+(π/4))=sin((π/4))=(1/( (√2)))  ⇒(1+i)^(9 )  =(2^(9/2) /2^(1/2) )(1+i)  =2^4 (1+i)=16(1+i)
1+i=2eiπ4(1+i)9=(2)9ek9π4i=292{cos(9π4)+isin(9π4)}cos(9π4)=cos(2π+π4)=cos(π4)=12sin(9π4)=sin(2π+π4)=sin(π4)=12(1+i)9=292212(1+i)=24(1+i)=16(1+i)
Answered by Olaf last updated on 20/Nov/20
(1+i)^9  = [(√2)e^(i(π/4)) ]^9  = 2^(9/2) e^(i((9π)/4))   = 16(√2)e^(i((π/4)+2π))  = 16(√2)(((1+i)/( (√2)))) = 16(1+i)
(1+i)9=[2eiπ4]9=292ei9π4=162ei(π4+2π)=162(1+i2)=16(1+i)

Leave a Reply

Your email address will not be published. Required fields are marked *