Menu Close

1-i-A-right-circular-cone-is-circumscribed-about-a-sphere-of-radius-r-If-d-is-the-distance-from-the-center-of-the-sphere-to-the-vertex-of-the-cone-show-that-the-volume-of-the-cone-V-r-2-r-




Question Number 118069 by Lordose last updated on 15/Oct/20
1.)i) A right circular cone is circumscribed  about a sphere of radius(r).  If d is the   distance from the center of the sphere  to the vertex of the cone, show that the  volume of the cone,V=((𝛑r^2 (r+d)^2 )/(3(d−r))).  ii)  Find the vertical angle of the cone when  it′s volume is minimum.
1.)i)Arightcircularconeiscircumscribedaboutasphereofradius(r).Ifdisthedistancefromthecenterofthespheretothevertexofthecone,showthatthevolumeofthecone,V=πr2(r+d)23(dr).ii)Findtheverticalangleoftheconewhenitsvolumeisminimum.
Answered by 1549442205PVT last updated on 15/Oct/20
i)Altitude of the cone equalto h=d+r  Denote by ϕ the at the vertex of the  cone⇒tan(ϕ/2)=(r/( (√(  d^2 −r^2  )))),  The radius of base circle equal to  R=htan(ϕ/2)=(((d+r)r)/( (√(d^2 −r^2 ))))  ⇒V=(1/3)Bh=(1/3).πR^2 h=((πr^2 (d+r)^3 )/(3(d^2 −r^2 )))         V=((πr^2 (d+r)^2 )/(3(d−r)))(q.e.d)  ii)There are two possible  possbility ocurr  a)The case r=constant  Put x=d.we need determine d when  V receive smallest value.Since r is  constant,so Vhas greatest value if and   only if f(x) =(((x+r)^2 )/(x−r)),x∈(0,2r)is smallest  f ′(x)=((2(x+r)(x−r)−(x+r)^2 )/((x−r)^2 ))=0  ⇔x^2 −2xr−3r^2 =0 Δ′=r^2 +3r^2 =(2r)^2   ⇒x=3r∉(0,2r).Thus if r=constant then  V can′t receive smallest  b)The d=constant ,put r=x.Then V  receives smallest value if and only if  f(x)=((x^2 (d+x)^2 )/(d−x)) receives smallestvalue  f ′(x)=((2x(d+x)(2x+d)+x^2 (d+x)^2 )/((d−x)^2 ))=0  ⇔4x^3 +6dx^2 +2d^2 x+x^4 +2dx^3 +d^2 x^2 =0  It is easy to see this equation has no  roots in interval (0,d)  Thus,V can′t receives smallest value  The problem has no solution
i)Altitudeoftheconeequaltoh=d+rDenotebyφtheatthevertexoftheconetanφ2=rd2r2,TheradiusofbasecircleequaltoR=htanφ2=(d+r)rd2r2V=13Bh=13.πR2h=πr2(d+r)33(d2r2)V=πr2(d+r)23(dr)(q.e.d)ii)Therearetwopossiblepossbilityocurra)Thecaser=constantPutx=d.weneeddeterminedwhenVreceivesmallestvalue.Sincerisconstant,soVhasgreatestvalueifandonlyiff(x)=(x+r)2xr,x(0,2r)issmallestf(x)=2(x+r)(xr)(x+r)2(xr)2=0x22xr3r2=0Δ=r2+3r2=(2r)2x=3r(0,2r).Thusifr=constantthenVcantreceivesmallestb)Thed=constant,putr=x.ThenVreceivessmallestvalueifandonlyiff(x)=x2(d+x)2dxreceivessmallestvaluef(x)=2x(d+x)(2x+d)+x2(d+x)2(dx)2=04x3+6dx2+2d2x+x4+2dx3+d2x2=0Itiseasytoseethisequationhasnorootsininterval(0,d)Thus,VcantreceivessmallestvalueTheproblemhasnosolution

Leave a Reply

Your email address will not be published. Required fields are marked *