Menu Close

1-i-Evaluate-1-sin-x-cos-x-2-dx-ii-Evaluate-2-2-2-x-2-2-x-2-x-dx-iii-Evaluate-cos-3-x-sin-2-x-sin-x-dx-2-cosec-tan-1-cos-cot-1-sec-sin-1-a-What-3-Prove-that-s




Question Number 65011 by AnjanDey last updated on 24/Jul/19
1.(i)Evaluate:∫(1/(sin x−cos x+(√2)))dx  (ii)Evaluate:∫2^2^2^x   2^2^x  2^x  dx  (iii)Evaluate:∫((cos^3 x)/(sin^2 x+sin x))dx  2.cosec [tan^(−1) {cos (cot^(−1) (sec(sin^(−1) a)))}]=What?  3.Prove that,  sin [cot^(−1) {cos (tan^(−1) x)}]=(√((x^2 +1)/(x^2 +2)))  4.Mention Order and Degree and  state also if it is linear or non-linear.       y+(d^2 y/dx^2 )=((19)/(25))∫y^2  dx
1.(i)Evaluate:1sinxcosx+2dx(ii)Evaluate:222x22x2xdx(iii)Evaluate:cos3xsin2x+sinxdx2.cosec[tan1{cos(cot1(sec(sin1a)))}]=What?3.Provethat,sin[cot1{cos(tan1x)}]=x2+1x2+24.MentionOrderandDegreeandstatealsoifitislinearornonlinear.y+d2ydx2=1925y2dx
Commented by mathmax by abdo last updated on 24/Jul/19
1) let I =∫   (dx/(sinx−cosx +(√2)))  changement tan((x/2))=t give  I =∫    (1/(((2t)/(1+t^2 ))−((1−t^2 )/(1+t^2 ))+(√2))) ((2dt)/(1+t^2 )) =∫   ((2dt)/(2t−1+t^2  +(√2)+(√2)t^2 ))  = ∫  ((2dt)/((1+(√2))t^2 +2t +(√2)−1))  Δ^′ =1−(2−1) =0 ⇒one roots x_0 =((−b^′ )/a) =((−1)/(1+(√2))) ⇒  I =(1/(1+(√2))) ∫   ((2dt)/((t+(1/(1+(√2))))^2 ))+C =((−2)/((1+(√2))( t+(1/(1+(√2))))))+C =((−2)/((1+(√2))t +1)) +C  =((−2)/(1+(1+(√2))tan((x/2)))) +C .
1)letI=dxsinxcosx+2changementtan(x2)=tgiveI=12t1+t21t21+t2+22dt1+t2=2dt2t1+t2+2+2t2=2dt(1+2)t2+2t+21Δ=1(21)=0onerootsx0=ba=11+2I=11+22dt(t+11+2)2+C=2(1+2)(t+11+2)+C=2(1+2)t+1+C=21+(1+2)tan(x2)+C.
Answered by Tanmay chaudhury last updated on 24/Jul/19
1)(1/( (√2)))∫(dx/(1+sin(x−(π/4))))  (1/( (√2)))∫((1−sin(x−(π/4)))/(cos^2 (x−(π/4))))dx  (1/( (√2)))∫sec^2 (x−(π/4))−tan(x−(π/4))sec(x−(π/4))   dx  (1/( (√2)))[tan(x−(π/4))−sec(x−(π/4))]+c
1)12dx1+sin(xπ4)121sin(xπ4)cos2(xπ4)dx12sec2(xπ4)tan(xπ4)sec(xπ4)dx12[tan(xπ4)sec(xπ4)]+c
Commented by AnjanDey last updated on 24/Jul/19
    Alter:  I=∫(1/(sin x−cos x+(√2)))dx  Here,sin x−cos x+(√2)=(√2)−(√2)((1/( (√2)))cos x−(1/( (√2)))sin x)                                                =(√2){1−cos ((π/4)+x)}                                                =2(√2)sin^2 ((π/2)+2x)                                                =2(√2)cos^2 2x  ∴I=∫(1/(2(√2)cos^2 2x))dx       =(1/(2(√2)))∫sec^2 2x dx       =(1/(2(√2)))∙((tan 2x)/2)+C  (Where C= constant of integration)       =(1/(4(√2)))tan 2x+C   It may be easy method...
Alter:I=1sinxcosx+2dxHere,sinxcosx+2=22(12cosx12sinx)=2{1cos(π4+x)}=22sin2(π2+2x)=22cos22xI=122cos22xdx=122sec22xdx=122tan2x2+C(WhereC=constantofintegration)=142tan2x+CItmaybeeasymethod
Answered by Tanmay chaudhury last updated on 24/Jul/19
3)∫(((1−sin^2 x)cosxdx)/(sinx(1+sinx)))  ∫(((1−sinx)cosxdx)/(sinx))  ∫(((1−t))/t)dt   [t=sinx   (dt/dx)=cosx]  ∫(dt/t)−∫dt  =lnt−t+c  =ln(sinx)−sinx+c
3)(1sin2x)cosxdxsinx(1+sinx)(1sinx)cosxdxsinx(1t)tdt[t=sinxdtdx=cosx]dttdt=lntt+c=ln(sinx)sinx+c
Answered by Tanmay chaudhury last updated on 24/Jul/19
3)tan^(−1) x=θ    tanθ=x  sin[cot^(−1) {cos(tan^(−1) x)}]  =sin[cot^(−1) {cosθ}]  let      cot^(−1) (cosθ)=α  cotα=cosθ=(1/( (√(1+x^2 ))))    [since tanθ=x   cosθ=(1/( (√(1+x^2 ))))]  sin(α)=(1/(cosecα))  sinα=(1/( (√(1+cot^2 α))))=(1/( (√(1+(1/(1+x^2 ))))))  sinα=((√(1+x^2 ))/( (√(2+x^2 ))))
3)tan1x=θtanθ=xsin[cot1{cos(tan1x)}]=sin[cot1{cosθ}]letcot1(cosθ)=αcotα=cosθ=11+x2[sincetanθ=xcosθ=11+x2]sin(α)=1cosecαsinα=11+cot2α=11+11+x2sinα=1+x22+x2
Answered by Tanmay chaudhury last updated on 24/Jul/19
2)sin^(−1) a=θ  secθ=(1/(cosθ))=(1/( (√(1−sin^2 θ))))=(1/( (√(1−a^2 ))))  cosec[tan^(−1) {cos(cot^(−1) (sec(sin^(−1) a)))}]  =cosec[tan^(−1) {cos(cot^(−1) ((1/( (√(1−a^2 ))))))}]  cot^(−1) ((1/( (√(1−a^2 )))))=α  cotα=(1/( (√(1−a^2 ))))   so cosα=(1/( (√(2−a^2 ))))  cosec[tan^(−1) {(1/( (√(2−a^2 ))))}]  tanβ=(1/( (√(2−a^2 ))))  →sinβ=(1/( (√(3−a^2 ))))  cosec[tan^(−1) {tanβ}]  cosecβ  =(√(3−a^2 ))
2)sin1a=θsecθ=1cosθ=11sin2θ=11a2cosec[tan1{cos(cot1(sec(sin1a)))}]=cosec[tan1{cos(cot1(11a2))}]cot1(11a2)=αcotα=11a2socosα=12a2cosec[tan1{12a2}]tanβ=12a2sinβ=13a2cosec[tan1{tanβ}]cosecβ=3a2
Answered by Tanmay chaudhury last updated on 24/Jul/19
∫2^2^2^x   2^2^x  2^x dx  t=2^x   (dt/dx)=2^x ln2  (1/(ln2))∫2^2^t  2^t dt  k=2^t   (dk/dt)=2^t ln2  (1/(ln2))×∫2^k ×(dk/(ln2))  =(1/((ln2)^2 ))∫2^k dk  =(1/((ln2)^3 ))×2^k +c  =(1/((ln2)^3 ))×2^2^t  +c  =(1/((ln2)^3 ))×2^2^2^x   +c
222x22x2xdxt=2xdtdx=2xln21ln222t2tdtk=2tdkdt=2tln21ln2×2k×dkln2=1(ln2)22kdk=1(ln2)3×2k+c=1(ln2)3×22t+c=1(ln2)3×222x+c

Leave a Reply

Your email address will not be published. Required fields are marked *