Menu Close

1-If-a-a-1i-a-2j-a-3k-and-b-b-1i-b-2j-b-3k-show-that-i-a-b-determinant-i-j-k-a-1-a-2-a-3-b-1-b-2-b-3-ii-a-b-a-1-b-1-a-2-b-2-a-3-b-3-2-If-a-




Question Number 44848 by pieroo last updated on 05/Oct/18
(1) If a^→ =a_(1i) +a_(2j) +a_(3k)  and b^→ =b_(1i) +b_(2j) +b_(3k)  show that  i. a^→ ×b^→ = determinant ((i,j,k),(a_1 ,a_2 ,a_3 ),(b_1 ,b_2 ,b_3 ))  ii. a^→ •b^→ =a_1 b_1 +a_2 b_2 +a_3 b_3     (2) If a^→ =a_(1i) +a_(2j) +a_(3k) ,  b^→ =b_(1i) +b_(2j) +b_(3k)  and   c^→ =c_(1i) +c_(2j) +c_(3k) , show that  i. a^→ •(b^→ ×c^→ )= determinant ((a_1 ,a_2 ,a_3 ),(b_1 ,b_2 ,b_3 ),(c_1 ,c_2 ,c_3 ))  ii. a•(b^→ ×c^→ )=b^→ (a^→ •c^→ )−c^→ (a^→ •b^→ )  iii. (a^→ ×b^→ )×c^→ =b^→ (a^→ •c^→ )−a^→ (b^→ •c^→ )  iv. a^→ ×(b^→ ×c^→ )+b^→ ×(c^→ ×a^→ )+c^→ ×(a^→ ×b^→ )=0
(1)If\boldsymbola=a1i+a2j+a3kand\boldsymbolb=b1i+b2j+b3kshowthati.\boldsymbola×\boldsymbolb=|ijka1a2a3b1b2b3|ii.\boldsymbola\boldsymbolb=a1b1+a2b2+a3b3(2)If\boldsymbola=a1i+a2j+a3k,\boldsymbolb=b1i+b2j+b3kand\boldsymbolc=c1i+c2j+c3k,showthati.\boldsymbola(\boldsymbolb×\boldsymbolc)=|a1a2a3b1b2b3c1c2c3|ii.\boldsymbola(\boldsymbolb×c)=\boldsymbolb(\boldsymbola\boldsymbolc)\boldsymbolc(\boldsymbola\boldsymbolb)iii.(\boldsymbola×\boldsymbolb)×\boldsymbolc=\boldsymbolb(\boldsymbola\boldsymbolc)\boldsymbola(\boldsymbolb\boldsymbolc)iv.\boldsymbola×(\boldsymbolb×\boldsymbolc)+\boldsymbolb×(\boldsymbolc×\boldsymbola)+\boldsymbolc×(\boldsymbola×\boldsymbolb)=0
Commented by pieroo last updated on 05/Oct/18
please I need help with the above questions
pleaseIneedhelpwiththeabovequestionspleaseIneedhelpwiththeabovequestions
Commented by pieroo last updated on 06/Oct/18
still waiting for some help, please
stillwaitingforsomehelp,pleasestillwaitingforsomehelp,please

Leave a Reply

Your email address will not be published. Required fields are marked *