Menu Close

1-If-cos-4-5-and-sin-5-13-where-0-lt-lt-pi-4-Find-tan-2-2-cos-4-pi-8-cos-4-3pi-8-cos-4-5pi-8-cos-4-7pi-8-




Question Number 105764 by bobhans last updated on 31/Jul/20
(1)If cos (α+β) = (4/5) and sin (α−β) = (5/(13))  where 0 < α< (π/4). Find tan 2α .  (2)  cos^4 ((π/8))+cos^4 (((3π)/8))+cos^4 (((5π)/8))+cos^4 (((7π)/8))?
(1)Ifcos(α+β)=45andsin(αβ)=513where0<α<π4.Findtan2α.(2)cos4(π8)+cos4(3π8)+cos4(5π8)+cos4(7π8)?
Commented by Dwaipayan Shikari last updated on 31/Jul/20
2)((17)/(16))
2)1716
Answered by bemath last updated on 01/Aug/20
(1)tan 2α = tan ((α+β)+(α−β))    = ((tan (α+β)+tan (α−β))/(1−tan (α+β)tan (α−β)))  = (((3/4)+(5/(12)))/(1−((15)/(48)))) = ((36+20)/(33)) = ((56)/(33)) .⊸
(1)tan2α=tan((α+β)+(αβ))=tan(α+β)+tan(αβ)1tan(α+β)tan(αβ)=34+51211548=36+2033=5633.
Commented by PRITHWISH SEN 2 last updated on 31/Jul/20
tan (α+β)=((sin (α+β))/(cos (α+β))) = ((3/5)/(4/5)) = (3/4)
tan(α+β)=sin(α+β)cos(α+β)=3545=34
Answered by john santu last updated on 31/Jul/20
(2)cos (((5π)/8))= cos (((3π)/8)) and cos (((7π)/8))=cos ((π/8))  ⇔ 2{ cos^4 ((π/8))+cos^4 (((3π)/8))} = 2{(cos^2 ((π/8))+cos^2 (((3π)/8)))^2   − 2cos^2 ((π/8))cos^2 (((3π)/8))}  ⇔let A=  [ cos^2 ((π/8))+cos^2 (((3π)/8)) ]^2 = [(cos (π/8)+cos ((3π)/8))^2 −2  cos (π/8).cos ((3π)/8) ]^2  =
(2)cos(5π8)=cos(3π8)andcos(7π8)=cos(π8)2{cos4(π8)+cos4(3π8)}=2{(cos2(π8)+cos2(3π8))22cos2(π8)cos2(3π8)}letA=[cos2(π8)+cos2(3π8)]2=[(cosπ8+cos3π8)22cosπ8.cos3π8]2=
Answered by som(math1967) last updated on 01/Aug/20
2)cos^4 ((5π)/8)=cos^4 (π−((3π)/8))=cos^4 ((3π)/8)  cos^4 ((7π)/8)=cos^4 (π−(π/8))=cos^4 (π/8)  cos^4 (π/8)+cos^4 ((3π)/8)+cos^4 ((5π)/8)+cos^4 ((7π)/8)  2(cos^4 (π/8)+cos^4 ((3π)/8))  2(cos^4 (π/8) +sin^4 (π/8)) ★  (cos^2 (π/8) +sin^2 (π/8))^2                          +(cos^2 (π/8) −sin^2 (π/8))^2   =1^2 +cos^2 (π/4)  =1+(1/2)=(3/2) ans  ★2(a^2 +b^2 )=(a+b)^2 +(a−b)^2   cos^4 ((3π)/8)=cos^4 ((π/2) −(π/8))=sin^4 (π/8)
2)cos45π8=cos4(π3π8)=cos43π8cos47π8=cos4(ππ8)=cos4π8cos4π8+cos43π8+cos45π8+cos47π82(cos4π8+cos43π8)2(cos4π8+sin4π8)(cos2π8+sin2π8)2+(cos2π8sin2π8)2=12+cos2π4=1+12=32ans2(a2+b2)=(a+b)2+(ab)2cos43π8=cos4(π2π8)=sin4π8
Commented by 1549442205PVT last updated on 01/Aug/20
There is a mistake ocurring at fourth  line up to below cos^4 ((3𝛑)/8)≠sin^4 ((3𝛑)/4).
Thereisamistakeocurringatfourthlineuptobelowcos43π8sin43π4.
Commented by bobhans last updated on 01/Aug/20
typo sir cos^4 (((3π)/4)) it should be cos^4 (((3π)/8))
typosircos4(3π4)itshouldbecos4(3π8)
Commented by som(math1967) last updated on 01/Aug/20
yes sir I fix it
yessirIfixit
Answered by mathmax by abdo last updated on 03/Aug/20
2)A =cos^4 ((π/8))+cos^2 (((7π)/8))+cos^4 (((3π)/8))+cos^4 (((5π)/8))  =cos^2 ((π/8))+cos^4 (π−(π/8))+cos^4 (((3π)/8))+cos^4 (π−((3π)/8))  =2cos^4 ((π/8)) +2cos^4 (((3π)/8))  =2{cos^4 ((π/8))+cos^4 ((π/2)−(π/8))} =2{cos^4 ((π/8))+sin^4 ((π/8))}  =2{ (cos^2 ((π/8))+sin^2 ((π/8)))^2 −2cos^2 ((π/8))sin^2 ((π/8))}  =2{1−2((1/2)sin((π/4)))^2  =2{1−(1/2)((1/( (√2))))^2 } =2{1−(1/4)}=2×(3/4) =(3/2)  ⇒A =(3/2)
2)A=cos4(π8)+cos2(7π8)+cos4(3π8)+cos4(5π8)=cos2(π8)+cos4(ππ8)+cos4(3π8)+cos4(π3π8)=2cos4(π8)+2cos4(3π8)=2{cos4(π8)+cos4(π2π8)}=2{cos4(π8)+sin4(π8)}=2{(cos2(π8)+sin2(π8))22cos2(π8)sin2(π8)}=2{12(12sin(π4))2=2{112(12)2}=2{114}=2×34=32A=32

Leave a Reply

Your email address will not be published. Required fields are marked *