Menu Close

1-If-is-an-imaginary-fifth-root-of-unity-then-find-value-of-log-2-1-2-3-1-2-Find-value-of-i-3-100-i-3-100-2-100-




Question Number 49202 by rahul 19 last updated on 04/Dec/18
1) If ω is an imaginary fifth root of  unity, then find value of   log _2  ∣1+ω+ω^2 +ω^3 −(1/ω)∣ ?  2) Find value of :  (i+(√3))^(100) +(i−(√3))^(100) +2^(100)  ?
1)Ifωisanimaginaryfifthrootofunity,thenfindvalueoflog21+ω+ω2+ω31ω?2)Findvalueof:(i+3)100+(i3)100+2100?
Commented by Abdo msup. last updated on 04/Dec/18
1) w^5 =1 ⇒w^5 −1=0 ⇒(w−1)(1+w+w^2 +w^3  +w^4 )=0 but w∈iR  ⇒1+w+w^2  +w^3  +w^4 =0 ⇒1+w+w^2  +w^3  =−w^4  ⇒  1+w+w^2  +w^3  −(1/w) =−(w^4  +(1/w)) =−((w^5  +1)/w) =−(2/w) ⇒  ∣1+w+w^2  +w^3 −(1/w)∣=(2/(∣w∣)) =(2/1) =2 ⇒  log_2  ∣1+w+w^2  +w^3 −(1/w)∣=log_2 (2)=1 .
1)w5=1w51=0(w1)(1+w+w2+w3+w4)=0butwiR1+w+w2+w3+w4=01+w+w2+w3=w41+w+w2+w31w=(w4+1w)=w5+1w=2w1+w+w2+w31w∣=2w=21=2log21+w+w2+w31w∣=log2(2)=1.
Commented by Abdo msup. last updated on 04/Dec/18
2)we have i+(√3)=2(((√3)/2)+(i/2)) =2 e^(i(π/6))   and   i−(√3)=−((√3)−i)=−2 e^(−((iπ)/6)) ⇒  ((√3)+i)^(100)  +(−(√3) +i)^(100)  +2^(100)   =2^(100)  e^(i((100π)/6))  +2^(100)  e^(−i((100π)/6))  +2^(100)   =2^(101)  cos(((100π)/6))+2^(100)  but  cos(((100π)/6))=cos(((50π)/3)) =cos(((48π +2π)/3))=cos(16π +((2π)/3))  =cos(((2π)/3))=−(1/2) ⇒((√3)+i)^(100)  +(−(√3)+i)^(100)  +2^(100)   =2^(101)  .(−(1/2)) +2^(100)  =−2^(100)  +2^(100)  =0 .
2)wehavei+3=2(32+i2)=2eiπ6andi3=(3i)=2eiπ6(3+i)100+(3+i)100+2100=2100ei100π6+2100ei100π6+2100=2101cos(100π6)+2100butcos(100π6)=cos(50π3)=cos(48π+2π3)=cos(16π+2π3)=cos(2π3)=12(3+i)100+(3+i)100+2100=2101.(12)+2100=2100+2100=0.
Commented by rahul 19 last updated on 05/Dec/18
thank you prof Abdo ☺️
Commented by maxmathsup by imad last updated on 05/Dec/18
you are welcome
youarewelcome
Answered by tanmay.chaudhury50@gmail.com last updated on 04/Dec/18
2)(√3) +i  =2(((√3)/2)+i(1/2))=2(cos(π/6)+isin(π/6))=2e^(i(π/6))   i−(√3)   =−2(((√3)/2)−i(1/2))=−2e^(−i(π/6))   {(2e^(i(π/6)) )}^(100) +{(−2e^(−i(π/6)) )}^(100) +2^(100)   =2^(100) {e^(i((100π)/6)) +e^(−i((100π)/6)) }+2^(100)   =2^(100) (2cos((100π)/6))+2^(100)   cos(3000^o )=cos(8×360^o +120^o )=cos(120^o )  cos(120^o )=((−1)/2)  so ans is  2^(100) ×2×((−1)/2)+2^(100) =0
2)3+i=2(32+i12)=2(cosπ6+isinπ6)=2eiπ6i3=2(32i12)=2eiπ6{(2eiπ6)}100+{(2eiπ6)}100+2100=2100{ei100π6+ei100π6}+2100=2100(2cos100π6)+2100cos(3000o)=cos(8×360o+120o)=cos(120o)cos(120o)=12soansis2100×2×12+2100=0
Commented by rahul 19 last updated on 05/Dec/18
thank you sir! ����
Answered by tanmay.chaudhury50@gmail.com last updated on 04/Dec/18
1)x^5 =1  (x−1)(x^4 +x^3 +x^2 +x+1)=0  w^4 +w^3 +w^2 +w+1=0    1+w+w^2 +w^3 −(1/w)  =−w^4 −(1/w)  =((−w^5 −1)/w)=((−1−1)/1)=−2  so ∣1+w+w^2 +w^3 −(1/w)∣=∣−2∣=2  hence ln_2 2=1
1)x5=1(x1)(x4+x3+x2+x+1)=0w4+w3+w2+w+1=01+w+w2+w31w=w41w=w51w=111=2so1+w+w2+w31w∣=∣2∣=2henceln22=1

Leave a Reply

Your email address will not be published. Required fields are marked *