Question Number 43665 by peter frank last updated on 13/Sep/18
$$\left.\mathrm{1}\right)\:{if}\:\:{s}_{{n}\:\:} \:=\alpha^{{n}} +\beta^{{n}} +\lambda^{{n}\:} \:{where}\:\alpha,\beta,\lambda \\ $$$${are}\:{the}\:{root}\:{of}\:{ax}^{\mathrm{3}} +{bx}^{\mathrm{2}} +{cx}+{d}=\mathrm{0} \\ $$$$\:{then}\:\:{show}\:{that}\:{s}_{\mathrm{4}\:} =\frac{\mathrm{4}{abd}+\mathrm{4}{b}^{\mathrm{2}} {c}−\mathrm{2}{c}}{{a}^{\mathrm{3}} } \\ $$
Commented by math1967 last updated on 14/Sep/18
$${more}\:{condition}\:{require},{I}\:{think} \\ $$
Answered by MJS last updated on 15/Sep/18
$$\mathrm{let}'\mathrm{s}\:\mathrm{try}\:\mathrm{an}\:\mathrm{example}\:\mathrm{with}\:\mathrm{given}\:\mathrm{values} \\ $$$$\mathrm{2}\left({x}−\mathrm{3}\right)\left({x}+\mathrm{5}\right)\left({x}−\mathrm{7}\right)=\mathrm{0} \\ $$$$\mathrm{2}{x}^{\mathrm{3}} −\mathrm{10}{x}^{\mathrm{2}} −\mathrm{58}{x}+\mathrm{210}=\mathrm{0} \\ $$$$\mathrm{3}^{\mathrm{4}} +\left(−\mathrm{5}\right)^{\mathrm{4}} +\mathrm{7}^{\mathrm{4}} =\mathrm{3107} \\ $$$$\frac{\mathrm{4}×\mathrm{2}×\left(−\mathrm{10}\right)×\mathrm{210}+\mathrm{4}×\left(−\mathrm{10}\right)^{\mathrm{2}} \left(−\mathrm{58}\right)−\mathrm{2}\left(−\mathrm{58}\right)}{\mathrm{2}^{\mathrm{3}} }=−\mathrm{4985}.\mathrm{5} \\ $$$$\Rightarrow\:\mathrm{not}\:\mathrm{true} \\ $$
Commented by math1967 last updated on 15/Sep/18
$${You}\:{are}\:{correct}\:{sir} \\ $$