Menu Close

1-If-x-2-2-y-2-x-2-2-y-2-6-show-that-when-the-equation-is-simplified-it-can-be-express-as-x-2-9-y-2-5-1-2-find-the-value-of-n-such-that-the-linear-factors-of-the-form-x




Question Number 53500 by Otchere Abdullai last updated on 22/Jan/19
1. If  (√((x+2)^(2 ) +y^2 ))+(√((x−2)^2 +y^2 ))=6  show that when the equation is   simplified, it can be express as  (x^2 /9)+(y^2 /5)=1  2. find the value of n such that the  linear factors of the form x+ay+b   and x+cy+d with integer coefficients  have the product x^2 +5xy+x+ny−n  sir please help
$$\mathrm{1}.\:{If}\:\:\sqrt{\left({x}+\mathrm{2}\right)^{\mathrm{2}\:} +{y}^{\mathrm{2}} }+\sqrt{\left({x}−\mathrm{2}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} }=\mathrm{6} \\ $$$${show}\:{that}\:{when}\:{the}\:{equation}\:{is}\: \\ $$$${simplified},\:{it}\:{can}\:{be}\:{express}\:{as} \\ $$$$\frac{{x}^{\mathrm{2}} }{\mathrm{9}}+\frac{{y}^{\mathrm{2}} }{\mathrm{5}}=\mathrm{1} \\ $$$$\mathrm{2}.\:{find}\:{the}\:{value}\:{of}\:{n}\:{such}\:{that}\:{the} \\ $$$${linear}\:{factors}\:{of}\:{the}\:{form}\:{x}+{ay}+{b}\: \\ $$$${and}\:{x}+{cy}+{d}\:{with}\:{integer}\:{coefficients} \\ $$$${have}\:{the}\:{product}\:{x}^{\mathrm{2}} +\mathrm{5}{xy}+{x}+{ny}−{n} \\ $$$${sir}\:{please}\:{help} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 22/Jan/19
(√((x+2)^2 +y^2 )) =6−(√((x−2)^2 +y^2 ))   x^2 +4x+4+y^2 =36−12(√((x−2)^2 +y^2 )) +x^2 −4x+4+y^2   cancelling x^2 ,y^2 ,4 from both side  4x=36−12(√(x^2 −4x+4+y^2 )) −4x  8x−36=−12(√(x^2 −4x+4+y^2 ))   2x−9=−3(√(x^2 −4x+4+y^2 ))   4x^2 −36x+81=9x^2 −36x+36+9y^2   5x^2 +9y^2 =45  (x^2 /9)+(y^2 /5)=1
$$\sqrt{\left({x}+\mathrm{2}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} }\:=\mathrm{6}−\sqrt{\left({x}−\mathrm{2}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} }\: \\ $$$${x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{4}+{y}^{\mathrm{2}} =\mathrm{36}−\mathrm{12}\sqrt{\left({x}−\mathrm{2}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} }\:+{x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{4}+{y}^{\mathrm{2}} \\ $$$${cancelling}\:{x}^{\mathrm{2}} ,{y}^{\mathrm{2}} ,\mathrm{4}\:{from}\:{both}\:{side} \\ $$$$\mathrm{4}{x}=\mathrm{36}−\mathrm{12}\sqrt{{x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{4}+{y}^{\mathrm{2}} }\:−\mathrm{4}{x} \\ $$$$\mathrm{8}{x}−\mathrm{36}=−\mathrm{12}\sqrt{{x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{4}+{y}^{\mathrm{2}} }\: \\ $$$$\mathrm{2}{x}−\mathrm{9}=−\mathrm{3}\sqrt{{x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{4}+{y}^{\mathrm{2}} }\: \\ $$$$\mathrm{4}{x}^{\mathrm{2}} −\mathrm{36}{x}+\mathrm{81}=\mathrm{9}{x}^{\mathrm{2}} −\mathrm{36}{x}+\mathrm{36}+\mathrm{9}{y}^{\mathrm{2}} \\ $$$$\mathrm{5}{x}^{\mathrm{2}} +\mathrm{9}{y}^{\mathrm{2}} =\mathrm{45} \\ $$$$\frac{{x}^{\mathrm{2}} }{\mathrm{9}}+\frac{{y}^{\mathrm{2}} }{\mathrm{5}}=\mathrm{1} \\ $$
Commented by Otchere Abdullai last updated on 22/Jan/19
wow! thank you sir God bless you
$${wow}!\:{thank}\:{you}\:{sir}\:{God}\:{bless}\:{you} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 22/Jan/19
2)(x+ay+b)(x+cy+d)=x^2 +5xy+x+ny−n  x^2 +cxy+xd+axy+acy^2 +ayd+bx+bcy+bd=x^2 +5xy+x+ny−n  x^2 +xy(a+c)+x(b+d)+y(ad+bc)+acy^2 +bd=x^2 +5xy+x+ny−n  so  a+c=5  b+d=1  ad+bc=n  ac=0  bd=−n  ac=0  a(5−a)=0   either a=0 or a=5  when  a=0  c=5  and when a=5  c=0  now let a=0  c.=5  ad+bc=n  0×d+b×5=n   [b=(n/5)]  a=0  b=(n/5)  c=5  d=1−b=1−(n/5)  bd=−n  ((n/5))×(1−(n/5))=−n  (1/5)×(((5−n)/5))=−1  5−n=−25  −n=−30 ...n=30
$$\left.\mathrm{2}\right)\left({x}+{ay}+{b}\right)\left({x}+{cy}+{d}\right)={x}^{\mathrm{2}} +\mathrm{5}{xy}+{x}+{ny}−{n} \\ $$$${x}^{\mathrm{2}} +{cxy}+{xd}+{axy}+{acy}^{\mathrm{2}} +{ayd}+{bx}+{bcy}+{bd}={x}^{\mathrm{2}} +\mathrm{5}{xy}+{x}+{ny}−{n} \\ $$$${x}^{\mathrm{2}} +{xy}\left({a}+{c}\right)+{x}\left({b}+{d}\right)+{y}\left({ad}+{bc}\right)+{acy}^{\mathrm{2}} +{bd}={x}^{\mathrm{2}} +\mathrm{5}{xy}+{x}+{ny}−{n} \\ $$$${so} \\ $$$${a}+{c}=\mathrm{5} \\ $$$${b}+{d}=\mathrm{1} \\ $$$${ad}+{bc}={n} \\ $$$${ac}=\mathrm{0} \\ $$$${bd}=−{n} \\ $$$${ac}=\mathrm{0} \\ $$$${a}\left(\mathrm{5}−{a}\right)=\mathrm{0}\:\:\:{either}\:{a}=\mathrm{0}\:{or}\:{a}=\mathrm{5} \\ $$$${when}\:\:{a}=\mathrm{0}\:\:{c}=\mathrm{5}\:\:{and}\:{when}\:{a}=\mathrm{5}\:\:{c}=\mathrm{0} \\ $$$${now}\:{let}\:{a}=\mathrm{0}\:\:{c}.=\mathrm{5} \\ $$$${ad}+{bc}={n} \\ $$$$\mathrm{0}×{d}+{b}×\mathrm{5}={n}\:\:\:\left[{b}=\frac{{n}}{\mathrm{5}}\right] \\ $$$${a}=\mathrm{0} \\ $$$${b}=\frac{{n}}{\mathrm{5}} \\ $$$${c}=\mathrm{5} \\ $$$${d}=\mathrm{1}−{b}=\mathrm{1}−\frac{{n}}{\mathrm{5}} \\ $$$${bd}=−{n} \\ $$$$\left(\frac{{n}}{\mathrm{5}}\right)×\left(\mathrm{1}−\frac{{n}}{\mathrm{5}}\right)=−{n} \\ $$$$\frac{\mathrm{1}}{\mathrm{5}}×\left(\frac{\mathrm{5}−{n}}{\mathrm{5}}\right)=−\mathrm{1} \\ $$$$\mathrm{5}−{n}=−\mathrm{25} \\ $$$$−{n}=−\mathrm{30}\:…{n}=\mathrm{30} \\ $$$$ \\ $$
Commented by Otchere Abdullai last updated on 22/Jan/19
powerful  Mathematician! We thank  God for having you in the group  God bless you sir!
$${powerful}\:\:{Mathematician}!\:{We}\:{thank} \\ $$$${God}\:{for}\:{having}\:{you}\:{in}\:{the}\:{group} \\ $$$${God}\:{bless}\:{you}\:{sir}! \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 22/Jan/19
mathematics...activates ones mind to think...
$${mathematics}…{activates}\:{ones}\:{mind}\:{to}\:{think}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *