Menu Close

1-If-x-yi-1-i-7-7-i-where-x-and-y-are-real-what-is-the-value-of-x-y-2-What-are-all-values-of-x-which-satisfy-x-2-cos-x-1-0-3-What-are-all-values-of-x-between-0-o-and-360-o-wh




Question Number 100732 by bemath last updated on 28/Jun/20
(1) If ((x+yi)/(1+i)) = (7/(7+i)) where x and y   are real , what is the value of x+y   (2)What are all values of x which  satisfy x^2 −cos x+1 = 0  (3)What are all values of x between   0^o  and 360^o  which satisfy   (5+2(√6))^(sin x)  + (5−2(√6))^(sin x)  = 2(√3)
(1)Ifx+yi1+i=77+iwherexandyarereal,whatisthevalueofx+y(2)Whatareallvaluesofxwhichsatisfyx2cosx+1=0(3)Whatareallvaluesofxbetween0oand360owhichsatisfy(5+26)sinx+(526)sinx=23
Commented by john santu last updated on 28/Jun/20
(2) x = 0
(2)x=0
Commented by john santu last updated on 28/Jun/20
(1)7x+7yi +xi −y = 7+7i  (7x−y)+(x+7y)i = 7+7i   { ((7x−y=7)),((x+7y=7)) :} ⇒ x =((28)/(25)) &y = ((21)/(25))  x+y = ((49)/(25))
(1)7x+7yi+xiy=7+7i(7xy)+(x+7y)i=7+7i{7xy=7x+7y=7x=2825&y=2125x+y=4925
Commented by john santu last updated on 28/Jun/20
(3) 5+2(√6) = ((5+2(√6))/(5−2(√6))) × 5−2(√6)  = (1/(5−2(√6)))   (5+2(√6))^(sin x)  + ((1/(5+2(√6))))^(sin x) =  2(√3)  set (5+2(√6))^(sin x)  = t   ⇒t + (1/t) = 2(√3) ; t^2 −2(√3) t+1 = 0  t = ((2(√3) + (√8))/2) = (√3)+(√2)   ⇒(5+2(√6))^(sin x)  = (((√3)+(√2))^2 )^(1/2)   ⇒(5+2(√6))^(sin x)  = (5+2(√6))^(1/2)   sin x = (1/2) , x = 30^o , 150^o
(3)5+26=5+26526×526=1526(5+26)sinx+(15+26)sinx=23set(5+26)sinx=tt+1t=23;t223t+1=0t=23+82=3+2(5+26)sinx=((3+2)2)12(5+26)sinx=(5+26)12sinx=12,x=30o,150o
Commented by Dwaipayan Shikari last updated on 28/Jun/20
(5+2(√6))^(sinx) +(1/((5+2(√6))^(sinx) ))=2(√3)  p+(1/p)=2(√3)⇒p^2 −2(√3)p+1=0⇒ p=((2(√3)±(√(12−4)))/2)=(√3)+(√2)  or(√3)−(√2)  (5+2(√6))^(sinx) =(√3)+(√2)  ((√3)+(√2))^(2sinx) =(√3)+(√2)⇒2sinx=1  sinx=(1/2) [x=kπ+(−1)^k (π/6)]{General solution)                                                      {k∈Z  or   x=30°  or   x=150°
(5+26)sinx+1(5+26)sinx=23p+1p=23p223p+1=0p=23±1242=3+2or32(5+26)sinx=3+2(3+2)2sinx=3+22sinx=1sinx=12[x=kπ+(1)kπ6]{Generalsolution){kZorx=30°orx=150°
Commented by Dwaipayan Shikari last updated on 28/Jun/20
          7x+7yi+xi−y=7+7i      7x−y+i(7y+x)=7+7i         { ((7x−y=7)),((7y+x=7)) :}  after solving  x=((56)/(50))  y=((42)/(50))⇒ x+y=((98)/(50))
7x+7yi+xiy=7+7i7xy+i(7y+x)=7+7i{7xy=77y+x=7aftersolvingx=5650y=4250x+y=9850
Answered by 1549442205 last updated on 28/Jun/20
  1) ((x+iy)/(1+i))=(7/(7+i))⇔(7x−y−7)+(x+7y−7)i=0  ⇔ { ((7x−y−7=0(1))),((x+7y−7=0(2))) :}⇔ { ((x=((28)/(25)))),((y=((21)/(25)))) :}  Hence x+y=((49)/(25))  2)x^2 −cosx+1=0⇔x^2 +2sin^2 (x/2)=0  ⇔ { ((x^2 =0)),((sin^2 (x/2)=0)) :} ⇔x=0  3)(5+2(√6))^(sinx) +(5−2(√6))^(simx) =2(√3)  ⇔((√3)+(√2))^(2sinx) +((√3)−(√2))^(2sinx) =2(√3) (1)  Putting ((√3)+(√2))^(2sinx) =y⇒((√3)−(√2))^(2sinx)   =(1/y)(due to ((√3)+(√2))((√3)−(√2))=1).We get  the quadratic eqiation y+(1/y)=2(√3)  ⇔y^2 −2(√3)y+1=0.Δ′=3−1=2,so  y_1 =(√3)+(√(2 )) ,y_2 =(√3)−(√2)  i)If y=(√3)+(√2) then ((√3)+(√2))^(2sinx) =(√3)+(√2)  ⇔2sinx=1⇔sinx=(1/2)⇔x=(π/6)+2kπ or  x=((5π)/6)+2nπ  ii)If y=(√3)−(√2)=((√3)+(√2))^(−1) then  ((√3)+(√2))^(2sinx) =((√3)+(√2))^(−1) ⇔2sinx=−1  ⇔sinx=((−1)/2)=sin((−π)/6)⇔x=((−π)/6)+2mπ  or x=((7π)/6)+2pπ  From the condition that 0<x<2π  we obtain x∈{(𝛑/6);((5𝛑)/6);((7𝛑)/6)}
1)x+iy1+i=77+i(7xy7)+(x+7y7)i=0{7xy7=0(1)x+7y7=0(2){x=2825y=2125Hencex+y=49252)x2cosx+1=0x2+2sin2x2=0{x2=0sin2x2=0x=03)(5+26)sinx+(526)simx=23(3+2)2sinx+(32)2sinx=23(1)Putting(3+2)2sinx=y(32)2sinx=1y(dueto(3+2)(32)=1).Wegetthequadraticeqiationy+1y=23y223y+1=0.Δ=31=2,soy1=3+2,y2=32i)Ify=3+2then(3+2)2sinx=3+22sinx=1sinx=12x=π6+2kπorx=5π6+2nπii)Ify=32=(3+2)1then(3+2)2sinx=(3+2)12sinx=1sinx=12=sinπ6x=π6+2mπorx=7π6+2pπFromtheconditionthat0<x<2πweobtainx{π6;5π6;7π6}

Leave a Reply

Your email address will not be published. Required fields are marked *