Menu Close

1-iz-0-1-iz-0-show-that-z-0-R-




Question Number 127572 by mathocean1 last updated on 30/Dec/20
∣1+iz_0 ∣=∣1−iz_0 ∣  show that z_0 ∈R
1+iz0∣=∣1iz0showthatz0R
Answered by mathmax by abdo last updated on 31/Dec/20
let z_0 =x+iy  so ∣1+iz_0 ∣=∣1−iz_0 ∣ ⇒∣1+i(x+iy)∣=∣1−i(x+iy)∣ ⇒  ∣1+ix−y∣=∣1−ix+y∣ ⇒(√((1−y)^2  +x^2 ))=(√((1+y)^2  +x^2 )) ⇒  (1−y)^2  +x^2  =(1+y)^2  +x^2  ⇒1−2y +y^2  =1+2y +y^2  ⇒4y=0 ⇒y=0 ⇒  z_0 =x ∈R
letz0=x+iyso1+iz0∣=∣1iz0⇒∣1+i(x+iy)∣=∣1i(x+iy)1+ixy∣=∣1ix+y(1y)2+x2=(1+y)2+x2(1y)2+x2=(1+y)2+x212y+y2=1+2y+y24y=0y=0z0=xR

Leave a Reply

Your email address will not be published. Required fields are marked *