Menu Close

1-iz-0-1-iz-0-show-that-z-0-R-




Question Number 127572 by mathocean1 last updated on 30/Dec/20
∣1+iz_0 ∣=∣1−iz_0 ∣  show that z_0 ∈R
$$\mid\mathrm{1}+{iz}_{\mathrm{0}} \mid=\mid\mathrm{1}−{iz}_{\mathrm{0}} \mid \\ $$$${show}\:{that}\:{z}_{\mathrm{0}} \in\mathbb{R} \\ $$
Answered by mathmax by abdo last updated on 31/Dec/20
let z_0 =x+iy  so ∣1+iz_0 ∣=∣1−iz_0 ∣ ⇒∣1+i(x+iy)∣=∣1−i(x+iy)∣ ⇒  ∣1+ix−y∣=∣1−ix+y∣ ⇒(√((1−y)^2  +x^2 ))=(√((1+y)^2  +x^2 )) ⇒  (1−y)^2  +x^2  =(1+y)^2  +x^2  ⇒1−2y +y^2  =1+2y +y^2  ⇒4y=0 ⇒y=0 ⇒  z_0 =x ∈R
$$\mathrm{let}\:\mathrm{z}_{\mathrm{0}} =\mathrm{x}+\mathrm{iy}\:\:\mathrm{so}\:\mid\mathrm{1}+\mathrm{iz}_{\mathrm{0}} \mid=\mid\mathrm{1}−\mathrm{iz}_{\mathrm{0}} \mid\:\Rightarrow\mid\mathrm{1}+\mathrm{i}\left(\mathrm{x}+\mathrm{iy}\right)\mid=\mid\mathrm{1}−\mathrm{i}\left(\mathrm{x}+\mathrm{iy}\right)\mid\:\Rightarrow \\ $$$$\mid\mathrm{1}+\mathrm{ix}−\mathrm{y}\mid=\mid\mathrm{1}−\mathrm{ix}+\mathrm{y}\mid\:\Rightarrow\sqrt{\left(\mathrm{1}−\mathrm{y}\right)^{\mathrm{2}} \:+\mathrm{x}^{\mathrm{2}} }=\sqrt{\left(\mathrm{1}+\mathrm{y}\right)^{\mathrm{2}} \:+\mathrm{x}^{\mathrm{2}} }\:\Rightarrow \\ $$$$\left(\mathrm{1}−\mathrm{y}\right)^{\mathrm{2}} \:+\mathrm{x}^{\mathrm{2}} \:=\left(\mathrm{1}+\mathrm{y}\right)^{\mathrm{2}} \:+\mathrm{x}^{\mathrm{2}} \:\Rightarrow\mathrm{1}−\mathrm{2y}\:+\mathrm{y}^{\mathrm{2}} \:=\mathrm{1}+\mathrm{2y}\:+\mathrm{y}^{\mathrm{2}} \:\Rightarrow\mathrm{4y}=\mathrm{0}\:\Rightarrow\mathrm{y}=\mathrm{0}\:\Rightarrow \\ $$$$\mathrm{z}_{\mathrm{0}} =\mathrm{x}\:\in\mathrm{R} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *