1-let-0-lt-lt-pi-2-and-A-0-pi-2-dx-x-2-2sin-x-1-calculate-A-2-calculate-0-pi-2-dx-x-2-2-x-1- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 53463 by maxmathsup by imad last updated on 22/Jan/19 1)let0<θ<π2andA(θ)=∫0π2dxx2+2sinθx+1calculateA(θ)2)calculate∫0π2dxx2+2x+1 Commented by maxmathsup by imad last updated on 23/Jan/19 1)wehaveA(θ)=∫0π2dxx2+2xsinθ+sin2θ+cos2θ=∫0π2dx(x+sinθ)2+cos2θchangementx+sinθ=tcosθgivet=x+sinθcosθA(θ)=∫tanθπ2cosθ+tanθcosθdtcosθ1+t2=∫tanθπ2cosθ+tanθdt1+t2=[argsh(t)]tanθπ2cosθ+tanθ=ln(t+1+t2]tanθπ2cosθ+tanθ=ln(π2cosθ+tanθ+1+(π2cosθ+tanθ)2)−ln(tanθ+1+tan2θ)2)∫0π2dxx2+2x+1=A(π4)=ln(π2cos(π4)+tan(π4)+1+(π2cos(π4)+tan(π4)2−ln(tan(π4)+1+tan2(π4))=ln(π2+1+1+(π2+1)2)−ln(1+2). Answered by tanmay.chaudhury50@gmail.com last updated on 22/Jan/19 1)∫0π2dxx2+2xsinθ+1∫0π2dx(x+sinθ)2+cos2θ=∣ln{∣(x+sinθ)+(x+sinθ)2+cos2θ)∣0π2=[ln{(π2+sinθ)+(π2+sinθ)2+cos2θ}−ln{(0+sinθ)+(0+sinθ)2+cos2θ}=ln{(π2+sinθ)+π24+πsinθ+1}−ln{sinθ+1}usingformula∫dxx2+a2=ln(x+x2+a2)2)putθ=π4foranswer…ln{(π4+12)+π24+π2+1}−ln{12+1}sirplscheck… Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: find-pi-4-pi-4-xsinx-cos-2-x-dx-Next Next post: Question-184538 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.