Menu Close

1-let-0-lt-lt-pi-2-and-A-0-pi-2-dx-x-2-2sin-x-1-calculate-A-2-calculate-0-pi-2-dx-x-2-2-x-1-




Question Number 53463 by maxmathsup by imad last updated on 22/Jan/19
1)let 0<θ<(π/2)    and  A(θ) =∫_0 ^(π/2)   (dx/( (√(x^2  +2sinθ x +1))))  calculate A(θ)  2) calculate ∫_0 ^(π/2)   (dx/( (√(x^2  +(√2)x +1))))
1)let0<θ<π2andA(θ)=0π2dxx2+2sinθx+1calculateA(θ)2)calculate0π2dxx2+2x+1
Commented by maxmathsup by imad last updated on 23/Jan/19
1) we have A(θ) =∫_0 ^(π/2)     (dx/( (√(x^2  +2x sinθ +sin^2 θ +cos^2 θ))))  =∫_0 ^(π/2)    (dx/( (√((x+sinθ)^(2 ) +cos^2 θ))))  changement x+sinθ=t cosθ give t =((x+sinθ)/(cosθ))  A(θ) = ∫_(tanθ) ^((π/(2cosθ))+tanθ)      ((cosθ dt)/(cosθ(√(1+t^2 )))) = ∫_(tanθ) ^((π/(2cosθ)) +tanθ)   (dt/( (√(1+t^2 )))) =[argsh(t)]_(tanθ) ^((π/(2cosθ))+tanθ)   =ln(t+(√(1+t^2 ))]_(tanθ) ^((π/(2cosθ)) +tanθ)  = ln((π/(2cosθ)) +tanθ +(√(1+((π/(2cosθ))+tanθ)^2 )))  −ln(tanθ +(√(1+tan^2 θ)))  2) ∫_0 ^(π/2)    (dx/( (√(x^2 +(√2)x +1)))) =A((π/4)) =ln((π/(2 cos((π/4)))) +tan((π/4))+(√(1+((π/(2cos((π/4))))+tan((π/4))^2 ))  −ln(tan((π/4))+(√(1+tan^2 ((π/4)))))  =ln((π/( (√2))) +1 +(√(1+((π/( (√2)))+1)^2 )))−ln(1+(√2)).
1)wehaveA(θ)=0π2dxx2+2xsinθ+sin2θ+cos2θ=0π2dx(x+sinθ)2+cos2θchangementx+sinθ=tcosθgivet=x+sinθcosθA(θ)=tanθπ2cosθ+tanθcosθdtcosθ1+t2=tanθπ2cosθ+tanθdt1+t2=[argsh(t)]tanθπ2cosθ+tanθ=ln(t+1+t2]tanθπ2cosθ+tanθ=ln(π2cosθ+tanθ+1+(π2cosθ+tanθ)2)ln(tanθ+1+tan2θ)2)0π2dxx2+2x+1=A(π4)=ln(π2cos(π4)+tan(π4)+1+(π2cos(π4)+tan(π4)2ln(tan(π4)+1+tan2(π4))=ln(π2+1+1+(π2+1)2)ln(1+2).
Answered by tanmay.chaudhury50@gmail.com last updated on 22/Jan/19
1)∫_0 ^(π/2) (dx/( (√(x^2 +2xsinθ+1))))  ∫_0 ^(π/2) (dx/( (√((x+sinθ)^2 +cos^2 θ))))=∣ln{∣(x+sinθ)+(√((x+sinθ)^2 +cos^2 θ)) )∣_0 ^(π/2)   =[ln{((π/2)+sinθ)+(√(((π/2)+sinθ)^2 +cos^2 θ)) }−ln{(0+sinθ)+(√((0+sinθ)^2 +cos^2 θ)) }  =ln{((π/2)+sinθ)+(√((π^2 /4)+πsinθ+1)) }−ln{sinθ+1}   using formula  ∫(dx/( (√(x^2 +a^2 ))))=ln(x+(√(x^2 +a^2 )) )  2)put θ=(π/4) for answer...  ln{((π/4)+(1/( (√2))))+(√((π^2 /4)+(π/( (√2)))+1)) }−ln{(1/( (√2)))+1}  sir pls check...
1)0π2dxx2+2xsinθ+10π2dx(x+sinθ)2+cos2θ=∣ln{(x+sinθ)+(x+sinθ)2+cos2θ)0π2=[ln{(π2+sinθ)+(π2+sinθ)2+cos2θ}ln{(0+sinθ)+(0+sinθ)2+cos2θ}=ln{(π2+sinθ)+π24+πsinθ+1}ln{sinθ+1}usingformuladxx2+a2=ln(x+x2+a2)2)putθ=π4foranswerln{(π4+12)+π24+π2+1}ln{12+1}sirplscheck

Leave a Reply

Your email address will not be published. Required fields are marked *