Menu Close

1-let-f-a-0-t-a-1-ln-t-1-t-dt-with-0-lt-a-lt-1-prove-that-f-a-is-convergent-and-determine-it-value-2-calculate-0-lnt-1-t-t-dt-3-calculate-0-lnt-3-t-




Question Number 99576 by mathmax by abdo last updated on 21/Jun/20
1)let f(a) =∫_0 ^∞   (( t^(a−1) ln(t))/(1+t)) dt   with 0<a<1   prove that f(a)is convergent and determine  it value  2)calculate∫_0 ^∞   ((lnt)/((1+t)(√t)))dt  3)calculate∫_0 ^∞   ((lnt)/((^3 (√t^2 ))(1+t)))dt
1)letf(a)=0ta1ln(t)1+tdtwith0<a<1provethatf(a)isconvergentanddetermineitvalue2)calculate0lnt(1+t)tdt3)calculate0lnt(3t2)(1+t)dt
Answered by maths mind last updated on 22/Jun/20
x=ln(t)  =∫_(−∞) ^(+∞) ((e^(ax) t)/(e^x +1))dx  =−∫_0 ^(+∞) ((e^(−ay) y)/(1+e^(−y) ))dy+∫_0 ^(+∞) ((e^(ay) y)/(1+e^y ))dy  =∫_0 ^(+∞) ((y(e^((a−1)y) −e^(−ay) ))/(1+e^(−y) ))dy  let f(β)=∫_0 ^(+∞) ((ye^(−βy) )/(1+e^(−y) ))  =∫_0 ^∞ ye^(−βy) (Σ_(k≥0) (−e^(−y) )^k dy  =∫_0 ^(+∞) Σ_(k≥0) y(−1)^k e^((−β−k)y)  dy  =Σ_(k≥0) (−1)^k ∫_0 ^(+∞) ye^(−(k+β)y)   =Σ_(k≥0) (−1)^k ∫_0 ^(+∞) ((te^(−t) )/((k+β)^2 ))=Σ_(k≥0) (((−1)^k )/((k+β)^2 ))  =Σ_(k≥0) (1/(4(k+(β/2))^2 ))−Σ_(k≥0) (1/(4(k+((1+β)/2))^2 ))=(1/4)(ζ(2,(β/2))−ζ(2,((1+β)/2)))  ζ(s,q)=Σ_(n∈N) (1/((n+q)^s ))   Hurwitz zeta Function  n+q≠0  f(a)=(1/4)(ζ(2,((1−a)/2))−ζ(2,((2−a)/2))−ζ(2,(a/2))+ζ(2,((1+a)/2)))  f(a)=(1/4)(ζ(2,((1−a)/2))+ζ(2,((1+a)/2)))  =(1/4)Σ_(n≥0) (1/((n+((1−a)/2))^2 ))+(1/((n+((1+a)/2))^2 =G))−(1/4)Σ(1/((n+((2−a)/2))^2 ))+(1/((n+(a/2))^2 =F))  G=(1/4).Σ_(n≥1) (1/((n−((1+a)/2))^2  ))+(1/((n+((1+a)/2))^2 ))+(1/4)(1/((((1+a)/2))^2 )).  πcot(πx)=(1/x)+Σ_(n≥1) (1/((x+n)))+(1/((x−n)))  ⇒π^2 (−1−cot^2 (πx))=−(1/x^2 )+Σ_(n≥1) ((−1)/((x+n)^2 ))−(1/((x−n)^2 ))  ⇒G=−(1/4)(−π^2 −π^2 cot^2 (π(((a+1)/2)))  sam we find F  ⇒F=(1/4)(−π^2 −π^2 cot^2 (((πa)/2)))⇒f(a)=−(π^2 /4)(tg^2 (((πa)/2))−cot^2 (((πa)/2)))  tg^2 (x)−cot^2 (x)=((sin^4 (x)−cos^4 (x))/(cos^2 (x)sin^2 (x)))=−4((cos(2x))/(sin^2 (2x)))  we get=((π^2 cos(πa))/(sin^2 (πa)))=f(a)  2) ∫((ln(t))/( (√t)(t+1)))dt=  f((1/2))  ∫((ln(t))/(t^(2/3) (1+t)))dt=f((1/3))
x=ln(t)=+eaxtex+1dx=0+eayy1+eydy+0+eayy1+eydy=0+y(e(a1)yeay)1+eydyletf(β)=0+yeβy1+ey=0yeβy(k0(ey)kdy=0+k0y(1)ke(βk)ydy=k0(1)k0+ye(k+β)y=k0(1)k0+tet(k+β)2=k0(1)k(k+β)2=k014(k+β2)2k014(k+1+β2)2=14(ζ(2,β2)ζ(2,1+β2))ζ(s,q)=nN1(n+q)sHurwitzzetaFunctionn+q0f(a)=14(ζ(2,1a2)ζ(2,2a2)ζ(2,a2)+ζ(2,1+a2))f(a)=14(ζ(2,1a2)+ζ(2,1+a2))=14n01(n+1a2)2+1(n+1+a2)2=G14Σ1(n+2a2)2+1(n+a2)2=FG=14.n11(n1+a2)2+1(n+1+a2)2+141(1+a2)2.πcot(πx)=1x+n11(x+n)+1(xn)π2(1cot2(πx))=1x2+n11(x+n)21(xn)2G=14(π2π2cot2(π(a+12))samwefindFF=14(π2π2cot2(πa2))f(a)=π24(tg2(πa2)cot2(πa2))tg2(x)cot2(x)=sin4(x)cos4(x)cos2(x)sin2(x)=4cos(2x)sin2(2x)weget=π2cos(πa)sin2(πa)=f(a)2)ln(t)t(t+1)dt=f(12)ln(t)t23(1+t)dt=f(13)
Answered by mathmax by abdo last updated on 22/Jun/20
1) let ϕ(a) =∫_0 ^∞  (t^(a−1) /(1+t))dt with  0<a<1  its eazy to prove thst ϕ is derivable  and ϕ^′ (a) =∫_0 ^∞ (∂/∂a){  (e^((a−1)lnt) /(1+t))}dt =∫_0 ^∞  ((lnt t^(a−1) )/(1+t))dt =f(a)  but ϕ(a) =(π/(sin(πa))) ⇒ϕ^′ (a) =π(((−πcos(πa))/(sin^2 (πa)))) =−π^2  ((cos(πa))/(sin^2 (πa))) ⇒  f(a) =−((π^2  cos(πa))/(sin^2 (πa)))  2)∫_0 ^∞   ((ln(t))/((1+t)(√t)))dt =∫_0 ^∞  ((t^(−(1/2)) ln(t))/(1+t))dt =∫_0 ^∞   ((t^((1/2)−1)  ln(t))/(1+t))dt   =f((1/2)) =−((π^2  cos((π/2)))/(sin^2 ((π/2)))) =0  another we do tbe changement (√t)=u ⇒∫_0 ^∞  ((lnt)/((1+t)(√t)))dt =∫_0 ^∞ ((2lnu)/((1+u^2 )u))(2u)du  =4∫_0 ^∞  ((lnu)/(1+u^2 ))du =0  3) ∫_0 ^∞   ((ln(t))/((^3 (√t^2 ))(1+t)))dt =∫_0 ^∞  ((t^(−(2/3))  ln(t))/(1+t))dt =∫_0 ^∞   ((t^((1/3)−1)  ln(t))/(1+t))dt  =f((1/3)) =−((π^2 cos((π/3)))/(sin^2 ((π/3)))) =−(π^2 /2)×(1/((((√3)/2))^2 )) =−(π^2 /2)×(4/3) =−((2π^2 )/3)
1)letφ(a)=0ta11+tdtwith0<a<1itseazytoprovethstφisderivableandφ(a)=0a{e(a1)lnt1+t}dt=0lntta11+tdt=f(a)butφ(a)=πsin(πa)φ(a)=π(πcos(πa)sin2(πa))=π2cos(πa)sin2(πa)f(a)=π2cos(πa)sin2(πa)2)0ln(t)(1+t)tdt=0t12ln(t)1+tdt=0t121ln(t)1+tdt=f(12)=π2cos(π2)sin2(π2)=0anotherwedotbechangementt=u0lnt(1+t)tdt=02lnu(1+u2)u(2u)du=40lnu1+u2du=03)0ln(t)(3t2)(1+t)dt=0t23ln(t)1+tdt=0t131ln(t)1+tdt=f(13)=π2cos(π3)sin2(π3)=π22×1(32)2=π22×43=2π23

Leave a Reply

Your email address will not be published. Required fields are marked *