Question Number 99576 by mathmax by abdo last updated on 21/Jun/20
$$\left.\mathrm{1}\right)\mathrm{let}\:\mathrm{f}\left(\mathrm{a}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{\:\mathrm{t}^{\mathrm{a}−\mathrm{1}} \mathrm{ln}\left(\mathrm{t}\right)}{\mathrm{1}+\mathrm{t}}\:\mathrm{dt}\:\:\:\mathrm{with}\:\mathrm{0}<\mathrm{a}<\mathrm{1}\:\:\:\mathrm{prove}\:\mathrm{that}\:\mathrm{f}\left(\mathrm{a}\right)\mathrm{is}\:\mathrm{convergent}\:\mathrm{and}\:\mathrm{determine} \\ $$$$\mathrm{it}\:\mathrm{value} \\ $$$$\left.\mathrm{2}\right)\mathrm{calculate}\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{lnt}}{\left(\mathrm{1}+\mathrm{t}\right)\sqrt{\mathrm{t}}}\mathrm{dt} \\ $$$$\left.\mathrm{3}\right)\mathrm{calculate}\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{lnt}}{\left(^{\mathrm{3}} \sqrt{\mathrm{t}^{\mathrm{2}} }\right)\left(\mathrm{1}+\mathrm{t}\right)}\mathrm{dt} \\ $$
Answered by maths mind last updated on 22/Jun/20
$${x}={ln}\left({t}\right) \\ $$$$=\int_{−\infty} ^{+\infty} \frac{{e}^{{ax}} {t}}{{e}^{{x}} +\mathrm{1}}{dx} \\ $$$$=−\int_{\mathrm{0}} ^{+\infty} \frac{{e}^{−{ay}} {y}}{\mathrm{1}+{e}^{−{y}} }{dy}+\int_{\mathrm{0}} ^{+\infty} \frac{{e}^{{ay}} {y}}{\mathrm{1}+{e}^{{y}} }{dy} \\ $$$$=\int_{\mathrm{0}} ^{+\infty} \frac{{y}\left({e}^{\left({a}−\mathrm{1}\right){y}} −{e}^{−{ay}} \right)}{\mathrm{1}+{e}^{−{y}} }{dy} \\ $$$${let}\:{f}\left(\beta\right)=\int_{\mathrm{0}} ^{+\infty} \frac{{ye}^{−\beta{y}} }{\mathrm{1}+{e}^{−{y}} } \\ $$$$=\int_{\mathrm{0}} ^{\infty} {ye}^{−\beta{y}} \left(\underset{{k}\geqslant\mathrm{0}} {\sum}\left(−{e}^{−{y}} \right)^{{k}} {dy}\right. \\ $$$$=\int_{\mathrm{0}} ^{+\infty} \underset{{k}\geqslant\mathrm{0}} {\sum}{y}\left(−\mathrm{1}\right)^{{k}} {e}^{\left(−\beta−{k}\right){y}} \:{dy} \\ $$$$=\underset{{k}\geqslant\mathrm{0}} {\sum}\left(−\mathrm{1}\right)^{{k}} \int_{\mathrm{0}} ^{+\infty} {ye}^{−\left({k}+\beta\right){y}} \\ $$$$=\underset{{k}\geqslant\mathrm{0}} {\sum}\left(−\mathrm{1}\right)^{{k}} \int_{\mathrm{0}} ^{+\infty} \frac{{te}^{−{t}} }{\left({k}+\beta\right)^{\mathrm{2}} }=\underset{{k}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{{k}} }{\left({k}+\beta\right)^{\mathrm{2}} } \\ $$$$=\underset{{k}\geqslant\mathrm{0}} {\sum}\frac{\mathrm{1}}{\mathrm{4}\left({k}+\frac{\beta}{\mathrm{2}}\right)^{\mathrm{2}} }−\underset{{k}\geqslant\mathrm{0}} {\sum}\frac{\mathrm{1}}{\mathrm{4}\left({k}+\frac{\mathrm{1}+\beta}{\mathrm{2}}\right)^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{4}}\left(\zeta\left(\mathrm{2},\frac{\beta}{\mathrm{2}}\right)−\zeta\left(\mathrm{2},\frac{\mathrm{1}+\beta}{\mathrm{2}}\right)\right) \\ $$$$\zeta\left({s},{q}\right)=\underset{{n}\in\mathbb{N}} {\sum}\frac{\mathrm{1}}{\left({n}+{q}\right)^{{s}} }\:\:\:{Hurwitz}\:{zeta}\:{Function}\:\:{n}+{q}\neq\mathrm{0} \\ $$$${f}\left({a}\right)=\frac{\mathrm{1}}{\mathrm{4}}\left(\zeta\left(\mathrm{2},\frac{\mathrm{1}−{a}}{\mathrm{2}}\right)−\zeta\left(\mathrm{2},\frac{\mathrm{2}−{a}}{\mathrm{2}}\right)−\zeta\left(\mathrm{2},\frac{{a}}{\mathrm{2}}\right)+\zeta\left(\mathrm{2},\frac{\mathrm{1}+{a}}{\mathrm{2}}\right)\right) \\ $$$${f}\left({a}\right)=\frac{\mathrm{1}}{\mathrm{4}}\left(\zeta\left(\mathrm{2},\frac{\mathrm{1}−{a}}{\mathrm{2}}\right)+\zeta\left(\mathrm{2},\frac{\mathrm{1}+{a}}{\mathrm{2}}\right)\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\underset{{n}\geqslant\mathrm{0}} {\sum}\frac{\mathrm{1}}{\left({n}+\frac{\mathrm{1}−{a}}{\mathrm{2}}\right)^{\mathrm{2}} }+\frac{\mathrm{1}}{\left({n}+\frac{\mathrm{1}+{a}}{\mathrm{2}}\right)^{\mathrm{2}} ={G}}−\frac{\mathrm{1}}{\mathrm{4}}\Sigma\frac{\mathrm{1}}{\left({n}+\frac{\mathrm{2}−{a}}{\mathrm{2}}\right)^{\mathrm{2}} }+\frac{\mathrm{1}}{\left({n}+\frac{{a}}{\mathrm{2}}\right)^{\mathrm{2}} ={F}} \\ $$$${G}=\frac{\mathrm{1}}{\mathrm{4}}.\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\mathrm{1}}{\left({n}−\frac{\mathrm{1}+{a}}{\mathrm{2}}\right)^{\mathrm{2}} \:}+\frac{\mathrm{1}}{\left({n}+\frac{\mathrm{1}+{a}}{\mathrm{2}}\right)^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{4}}\frac{\mathrm{1}}{\left(\frac{\mathrm{1}+{a}}{\mathrm{2}}\right)^{\mathrm{2}} }. \\ $$$$\pi{cot}\left(\pi{x}\right)=\frac{\mathrm{1}}{{x}}+\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\mathrm{1}}{\left({x}+{n}\right)}+\frac{\mathrm{1}}{\left({x}−{n}\right)} \\ $$$$\Rightarrow\pi^{\mathrm{2}} \left(−\mathrm{1}−{cot}^{\mathrm{2}} \left(\pi{x}\right)\right)=−\frac{\mathrm{1}}{{x}^{\mathrm{2}} }+\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{−\mathrm{1}}{\left({x}+{n}\right)^{\mathrm{2}} }−\frac{\mathrm{1}}{\left({x}−{n}\right)^{\mathrm{2}} } \\ $$$$\Rightarrow{G}=−\frac{\mathrm{1}}{\mathrm{4}}\left(−\pi^{\mathrm{2}} −\pi^{\mathrm{2}} {cot}^{\mathrm{2}} \left(\pi\left(\frac{{a}+\mathrm{1}}{\mathrm{2}}\right)\right)\right. \\ $$$${sam}\:{we}\:{find}\:{F} \\ $$$$\Rightarrow{F}=\frac{\mathrm{1}}{\mathrm{4}}\left(−\pi^{\mathrm{2}} −\pi^{\mathrm{2}} {cot}^{\mathrm{2}} \left(\frac{\pi{a}}{\mathrm{2}}\right)\right)\Rightarrow{f}\left({a}\right)=−\frac{\pi^{\mathrm{2}} }{\mathrm{4}}\left({tg}^{\mathrm{2}} \left(\frac{\pi{a}}{\mathrm{2}}\right)−{cot}^{\mathrm{2}} \left(\frac{\pi{a}}{\mathrm{2}}\right)\right) \\ $$$${tg}^{\mathrm{2}} \left({x}\right)−{cot}^{\mathrm{2}} \left({x}\right)=\frac{{sin}^{\mathrm{4}} \left({x}\right)−{cos}^{\mathrm{4}} \left({x}\right)}{{cos}^{\mathrm{2}} \left({x}\right){sin}^{\mathrm{2}} \left({x}\right)}=−\mathrm{4}\frac{{cos}\left(\mathrm{2}{x}\right)}{{sin}^{\mathrm{2}} \left(\mathrm{2}{x}\right)} \\ $$$${we}\:{get}=\frac{\pi^{\mathrm{2}} {cos}\left(\pi{a}\right)}{{sin}^{\mathrm{2}} \left(\pi{a}\right)}={f}\left({a}\right) \\ $$$$\left.\mathrm{2}\right)\:\int\frac{{ln}\left({t}\right)}{\:\sqrt{{t}}\left({t}+\mathrm{1}\right)}{dt}=\:\:{f}\left(\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$$\int\frac{{ln}\left({t}\right)}{{t}^{\frac{\mathrm{2}}{\mathrm{3}}} \left(\mathrm{1}+{t}\right)}{dt}={f}\left(\frac{\mathrm{1}}{\mathrm{3}}\right) \\ $$$$ \\ $$$$ \\ $$
Answered by mathmax by abdo last updated on 22/Jun/20
$$\left.\mathrm{1}\right)\:\mathrm{let}\:\varphi\left(\mathrm{a}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{t}^{\mathrm{a}−\mathrm{1}} }{\mathrm{1}+\mathrm{t}}\mathrm{dt}\:\mathrm{with}\:\:\mathrm{0}<\mathrm{a}<\mathrm{1}\:\:\mathrm{its}\:\mathrm{eazy}\:\mathrm{to}\:\mathrm{prove}\:\mathrm{thst}\:\varphi\:\mathrm{is}\:\mathrm{derivable} \\ $$$$\mathrm{and}\:\varphi^{'} \left(\mathrm{a}\right)\:=\int_{\mathrm{0}} ^{\infty} \frac{\partial}{\partial\mathrm{a}}\left\{\:\:\frac{\mathrm{e}^{\left(\mathrm{a}−\mathrm{1}\right)\mathrm{lnt}} }{\mathrm{1}+\mathrm{t}}\right\}\mathrm{dt}\:=\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{lnt}\:\mathrm{t}^{\mathrm{a}−\mathrm{1}} }{\mathrm{1}+\mathrm{t}}\mathrm{dt}\:=\mathrm{f}\left(\mathrm{a}\right) \\ $$$$\mathrm{but}\:\varphi\left(\mathrm{a}\right)\:=\frac{\pi}{\mathrm{sin}\left(\pi\mathrm{a}\right)}\:\Rightarrow\varphi^{'} \left(\mathrm{a}\right)\:=\pi\left(\frac{−\pi\mathrm{cos}\left(\pi\mathrm{a}\right)}{\mathrm{sin}^{\mathrm{2}} \left(\pi\mathrm{a}\right)}\right)\:=−\pi^{\mathrm{2}} \:\frac{\mathrm{cos}\left(\pi\mathrm{a}\right)}{\mathrm{sin}^{\mathrm{2}} \left(\pi\mathrm{a}\right)}\:\Rightarrow \\ $$$$\mathrm{f}\left(\mathrm{a}\right)\:=−\frac{\pi^{\mathrm{2}} \:\mathrm{cos}\left(\pi\mathrm{a}\right)}{\mathrm{sin}^{\mathrm{2}} \left(\pi\mathrm{a}\right)} \\ $$$$\left.\mathrm{2}\right)\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{ln}\left(\mathrm{t}\right)}{\left(\mathrm{1}+\mathrm{t}\right)\sqrt{\mathrm{t}}}\mathrm{dt}\:=\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{t}^{−\frac{\mathrm{1}}{\mathrm{2}}} \mathrm{ln}\left(\mathrm{t}\right)}{\mathrm{1}+\mathrm{t}}\mathrm{dt}\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{t}^{\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{1}} \:\mathrm{ln}\left(\mathrm{t}\right)}{\mathrm{1}+\mathrm{t}}\mathrm{dt}\: \\ $$$$=\mathrm{f}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\:=−\frac{\pi^{\mathrm{2}} \:\mathrm{cos}\left(\frac{\pi}{\mathrm{2}}\right)}{\mathrm{sin}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{2}}\right)}\:=\mathrm{0} \\ $$$$\mathrm{another}\:\mathrm{we}\:\mathrm{do}\:\mathrm{tbe}\:\mathrm{changement}\:\sqrt{\mathrm{t}}=\mathrm{u}\:\Rightarrow\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{lnt}}{\left(\mathrm{1}+\mathrm{t}\right)\sqrt{\mathrm{t}}}\mathrm{dt}\:=\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{2lnu}}{\left(\mathrm{1}+\mathrm{u}^{\mathrm{2}} \right)\mathrm{u}}\left(\mathrm{2u}\right)\mathrm{du} \\ $$$$=\mathrm{4}\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{lnu}}{\mathrm{1}+\mathrm{u}^{\mathrm{2}} }\mathrm{du}\:=\mathrm{0} \\ $$$$\left.\mathrm{3}\right)\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{ln}\left(\mathrm{t}\right)}{\left(^{\mathrm{3}} \sqrt{\mathrm{t}^{\mathrm{2}} }\right)\left(\mathrm{1}+\mathrm{t}\right)}\mathrm{dt}\:=\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{t}^{−\frac{\mathrm{2}}{\mathrm{3}}} \:\mathrm{ln}\left(\mathrm{t}\right)}{\mathrm{1}+\mathrm{t}}\mathrm{dt}\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{t}^{\frac{\mathrm{1}}{\mathrm{3}}−\mathrm{1}} \:\mathrm{ln}\left(\mathrm{t}\right)}{\mathrm{1}+\mathrm{t}}\mathrm{dt} \\ $$$$=\mathrm{f}\left(\frac{\mathrm{1}}{\mathrm{3}}\right)\:=−\frac{\pi^{\mathrm{2}} \mathrm{cos}\left(\frac{\pi}{\mathrm{3}}\right)}{\mathrm{sin}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{3}}\right)}\:=−\frac{\pi^{\mathrm{2}} }{\mathrm{2}}×\frac{\mathrm{1}}{\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{\mathrm{2}} }\:=−\frac{\pi^{\mathrm{2}} }{\mathrm{2}}×\frac{\mathrm{4}}{\mathrm{3}}\:=−\frac{\mathrm{2}\pi^{\mathrm{2}} }{\mathrm{3}} \\ $$$$ \\ $$