Menu Close

1-let-f-R-C-2pi-periodic-even-f-x-x-x-0-pi-developp-f-at-fourier-serie-2-calculate-p-0-1-2p-1-2-




Question Number 33894 by math khazana by abdo last updated on 26/Apr/18
1)let f  R→C  2π periodic even  /f(x)=x   ∀ x∈[0,π[  developp f at fourier serie  2) calculate  Σ_(p=0) ^∞   (1/((2p+1)^2 )) .
1)letfRC2πperiodiceven/f(x)=xx[0,π[developpfatfourierserie2)calculatep=01(2p+1)2.
Commented by abdo imad last updated on 28/Apr/18
f is even so f(x)=(a_0 /2) +Σ_(n=1) ^∞  a_n cos(nx)with  a_n = (2/T) ∫_([T]) f(x)cos(nx)dx=(2/(2π)) ∫_(−π) ^π  x cos(nx)dx  =(2/π) ∫_0 ^π  xcos(nx)dx⇒ (π/2)a_n =∫_0 ^π  xcos(nx)dx let integrate  by parts u^ =x and v^′ =cos(nx)⇒  (π/2)a_n =((x/n)sin(nx)]_0 ^π  −∫_0 ^π  (1/n)sin(nx)dx  =−(1/n)∫_0 ^π sin(nx)=(1/n^2 )[cos(nx)]_0 ^π =(1/n^2 )((−1)^n  −1) ⇒  a_n =(2/(πn^2 ))((−1)^n −1)⇒a_(2n)  =0 and a_(2n+1) =((−4)/(π(2n+1)^2 ))  (π/2)a_0 =∫_0 ^π xdx=(π^2 /2) ⇒a_0  =π ⇒  f(x) = (π/2) −(4/π) Σ_(n=0) ^∞    ((cos(2n+1)x)/((2n+1)^2 ))  (d)  2) let take x=0 in (d) we get  0=(π/2) −(4/π) Σ_(n=0) ^∞  (1/((2n+1)^2 )) ⇒(4/π) Σ_(n=0) ^∞  (1/((2n+1)^2 )) =(π/2) ⇒  Σ_(n=0) ^∞    (1/((2n+1)^2 )) =(π^2 /8) .
fisevensof(x)=a02+n=1ancos(nx)withan=2T[T]f(x)cos(nx)dx=22πππxcos(nx)dx=2π0πxcos(nx)dxπ2an=0πxcos(nx)dxletintegratebypartsu=xandv=cos(nx)π2an=(xnsin(nx)]0π0π1nsin(nx)dx=1n0πsin(nx)=1n2[cos(nx)]0π=1n2((1)n1)an=2πn2((1)n1)a2n=0anda2n+1=4π(2n+1)2π2a0=0πxdx=π22a0=πf(x)=π24πn=0cos(2n+1)x(2n+1)2(d)2)lettakex=0in(d)weget0=π24πn=01(2n+1)24πn=01(2n+1)2=π2n=01(2n+1)2=π28.

Leave a Reply

Your email address will not be published. Required fields are marked *