Menu Close

1-let-f-x-0-dt-1-x-2-t-4-with-x-gt-0-find-a-simple-form-of-f-x-2-calculate-0-dt-1-t-4-3-calculate-0-dt-1-3t-4-




Question Number 39030 by maxmathsup by imad last updated on 01/Jul/18
1) let f(x) = ∫_0 ^∞    (dt/(1+x^2 t^4 ))  with x >0  find a simple form of f(x)  2) calculate  ∫_0 ^(+∞)    (dt/(1+t^4 ))  3) calculate ∫_0 ^∞      (dt/(1+3t^4 ))
1)letf(x)=0dt1+x2t4withx>0findasimpleformoff(x)2)calculate0+dt1+t43)calculate0dt1+3t4
Commented by maxmathsup by imad last updated on 02/Jul/18
1)we have 2f(x)= ∫_(−∞) ^(+∞)     (dt/(1+x^2 t^4 )) let ϕ(z)= (1/(x^2 z^4  +1))  ϕ(z)= (1/(x^2 (z^4  +(1/x^2 )))) = (1/(x^2 (z^2  −(i/x))(z^2  +(i/x))))  = (1/(x^2 ( z −(1/( (√x)))e^((iπ)/4) )(z+(1/( (√x)))e^((iπ)/4) )(z−(1/( (√x)))e^(−((iπ)/4)) )(z+(1/( (√x)))e^(−((iπ)/4)) )))  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ { Res(ϕ,(1/( (√x)))e^((iπ)/4) ) +Res(ϕ,−(1/( (√x)))e^(−((iπ)/4)) ) but  Res(ϕ,z_i ) = (1/(4x^2 z_i ^3 ))  wehave z_i ^4  =((−1)/x^2 ) ⇒Res(ϕ,z_i )= (z_i /(4x^2  (−(1/x^2 )))) =−(z_i /4)  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ {−(1/(4(√x))) e^((iπ)/4)      +(1/(4(√x))) e^(−((iπ)/4)) }  =−((iπ)/(2(√x))){ e^((iπ)/4)  −e^(−((iπ)/4)) } =−((iπ)/(2(√x))){2i ((√2)/2)} =((π(√2))/( (√x))) ⇒  f(x) =   ((π(√2))/(2(√x))) .  2) ∫_0 ^∞     (dt/(1+t^4 )) = f(1) = ((π(√2))/2)  3) ∫_0 ^∞      (dt/(1+3t^4 ))  =f((√3)) = ((π(√2))/(2(^4 (√3)))) .
1)wehave2f(x)=+dt1+x2t4letφ(z)=1x2z4+1φ(z)=1x2(z4+1x2)=1x2(z2ix)(z2+ix)=1x2(z1xeiπ4)(z+1xeiπ4)(z1xeiπ4)(z+1xeiπ4)+φ(z)dz=2iπ{Res(φ,1xeiπ4)+Res(φ,1xeiπ4)butRes(φ,zi)=14x2zi3wehavezi4=1x2Res(φ,zi)=zi4x2(1x2)=zi4+φ(z)dz=2iπ{14xeiπ4+14xeiπ4}=iπ2x{eiπ4eiπ4}=iπ2x{2i22}=π2xf(x)=π22x.2)0dt1+t4=f(1)=π223)0dt1+3t4=f(3)=π22(43).
Commented by ajfour last updated on 02/Jul/18
Sir, have you found  2f(x) or f(x);  please check..
Sir,haveyoufound2f(x)orf(x);pleasecheck..
Commented by maxmathsup by imad last updated on 02/Jul/18
error from line 7    ∫_(−∞) ^(+∞)  ϕ(z)dz = ((π(√2))/(2(√x)))  ⇒f(x)= ((π(√2))/(4(√x)))  2) ∫_0 ^∞     (dt/(1+t^4 ))  =f(1) = ((π(√2))/4)  3) ∫_0 ^∞     (dt/(1+3t^4 ))  =f((√3)) =  ((π(√2))/(4(^4 (√3)))) .
errorfromline7+φ(z)dz=π22xf(x)=π24x2)0dt1+t4=f(1)=π243)0dt1+3t4=f(3)=π24(43).
Answered by behi83417@gmail.com last updated on 02/Jul/18
(1−ixt^2 )(1+ixt^2 )=0  ⇒t^2 =(1/(ix)),−(1/(ix))⇒t=±(1/( (√(ix)))),((±i)/( (√(ix)))),(1/( (√(ix))))=m  m=(1/( (√(ix))))=((√i)/(i(√x)))=−((ie^((iπ)/4) )/( (√x)))=−((i(((√2)/2)+i((√2)/2)))/( (√x)))=((1−i)/( (√(2x))))  I=∫(dt/((t−m)(t+m)(t−im)(t+im)))=  (1/((t−m)(t+m)(t−im)(t+im)))=  =(a/(t−m))+(b/(t+m))+(c/(t−im))+(d/(t+im))  a=(1/(2m.m^2 (1−i^2 )))=(1/(4m^3 ))  b=(1/(−2m.m^2 (1−i^2 )))=((−1)/(4m^3 ))  c=(1/(m(i−1)m(i+1)(2im)))=(i/(4m^3 ))  d=(1/(−m(i+1)m(i−1)(2im)))=((−i)/(4m^3 ))  I=(1/(4m^3 ))∫[(1/(t−m))−(1/(t+m))+(i/(t−im))−(i/(t+im))]dt  =(1/(4m^3 ))[ln((t−m)/(t+m))+i.ln((t−im)/(t+im))]=  =(1/(4m^3 ))[ln((t^2 −2mt+m^2 )/(t^2 −m^2 ))+i.ln((t^2 −2mit−m^2 )/(t^2 +m^2 ))]=  =(1/(4.(((1−i)^3 )/(2x(√(2x))))))[ln((t^2 −2t((1−i)/( (√(2x))))+(i/x))/(t^2 −(i/x)))+i.ln((t^2 −2t((1+i)/( (√(2x))))−(i/x))/(t^2 +(i/x)))]=  =−((x(√(2x)))/(4(2i+1)))[ln(((x(√(2x)).t^2 −2(1−i)xt+i.(√(2x)))/(xt^2 −i)))+  +i.ln(((x(√(2x)).t^2 −2(1+i)xt−i(√(2x)))/(xt^2 +i)))]+const.  F(x)=F(∞)−F(0)=−((x(√(2x)))/(4(2i+1)))[ln(√(2x))+i.ln(√(2x))−  −ln(−(√(2x)))−i.ln(−(√(2x)))]=  =((−x(√(2x)))/(4(2i+1)))[ln(−1)+iln(−1)]=  =((−x(√(2x)))/(4(−4−1)))(2i−1)(1+i).i𝛑=((−π.x(√(2x)))/(20))(3i+1)  F(1)=((−π(√2))/(20))(3i+1)  F((√3))=((−π(√(6(√3))))/(20))(3i+1) .
(1ixt2)(1+ixt2)=0t2=1ix,1ixt=±1ix,±iix,1ix=mm=1ix=iix=ieiπ4x=i(22+i22)x=1i2xI=dt(tm)(t+m)(tim)(t+im)=1(tm)(t+m)(tim)(t+im)==atm+bt+m+ctim+dt+ima=12m.m2(1i2)=14m3b=12m.m2(1i2)=14m3c=1m(i1)m(i+1)(2im)=i4m3d=1m(i+1)m(i1)(2im)=i4m3I=14m3[1tm1t+m+itimit+im]dt=14m3[lntmt+m+i.lntimt+im]==14m3[lnt22mt+m2t2m2+i.lnt22mitm2t2+m2]==14.(1i)32x2x[lnt22t1i2x+ixt2ix+i.lnt22t1+i2xixt2+ix]==x2x4(2i+1)[ln(x2x.t22(1i)xt+i.2xxt2i)++i.ln(x2x.t22(1+i)xti2xxt2+i)]+const.F(x)=F()F(0)=x2x4(2i+1)[ln2x+i.ln2xln(2x)i.ln(2x)]==x2x4(2i+1)[ln(1)+iln(1)]==x2x4(41)(2i1)(1+i).iπ=π.x2x20(3i+1)F(1)=π220(3i+1)F(3)=π6320(3i+1).
Answered by ajfour last updated on 02/Jul/18
f(x)=(1/x^2 )∫_0 ^(  ∞) (dt/(t^4 +((1/x))^2 ))      let   (1/x) = y  f(x)=y^2 ∫((dt/t^2 )/(t^2 +(y^2 /t^2 ))) = (y/2)∫(([(1+(y/t^2 ))−(1−(y/t^2 ))]dt)/((t−(y/t))^2 +2y))      =(y/2)[∫(du/(u^2 +((√(2y)))^2 ))−∫^  (dv/(v^2 −((√(2y)))^2 ))]    =(y/(2(√(2y))))tan^(−1) ((u/( (√(2y)))))−(y/(4(√(2y))))ln ∣((v−(√(2y)))/(v+(√(2y))))∣+c   =(1/(2(√(2x))))tan^(−1) (((t−(1/(tx)))/( (√(2/x)))))∣_0 ^∞             −(1/(4(√(2x))))ln ∣((t+(1/(tx))−(√(2/x)))/(t+(1/(tx))+(√(2/x))))∣_0 ^∞    ⇒   f(x) = (π/(2(√(2x))))
f(x)=1x20dtt4+(1x)2let1x=yf(x)=y2dtt2t2+y2t2=y2[(1+yt2)(1yt2)]dt(tyt)2+2y=y2[duu2+(2y)2dvv2(2y)2]=y22ytan1(u2y)y42ylnv2yv+2y+c=122xtan1(t1tx2x)0142xlnt+1tx2xt+1tx+2x0f(x)=π22x
Commented by ajfour last updated on 02/Jul/18
wish i could play with the residue  theorem even..
wishicouldplaywiththeresiduetheoremeven..
Commented by maxmathsup by imad last updated on 02/Jul/18
sir Ajfour it seems that you have played a game with this integral...
sirAjfouritseemsthatyouhaveplayedagamewiththisintegral

Leave a Reply

Your email address will not be published. Required fields are marked *