Menu Close

1-let-p-integr-natural-not-0-calculate-arctan-p-p-1-arctan-p-1-p-2-let-S-n-p-1-n-arctan-1-2p-2-find-lim-n-S-n-




Question Number 51985 by maxmathsup by imad last updated on 01/Jan/19
1) let p integr natural not 0 calculate arctan((p/(p+1)))−arctan(((p−1)/p))  2)let S_n =Σ_(p=1) ^n  arctan((1/(2p^2 ))) find lim_(n→+∞)  S_n
1)letpintegrnaturalnot0calculatearctan(pp+1)arctan(p1p)2)letSn=p=1narctan(12p2)findlimn+Sn
Commented by Abdo msup. last updated on 19/Jan/19
we havetan( arctan((p/(p+1)))−arctan(((p−1)/p)))  =(((p/(p+1))−((p−1)/p))/(1+(p/(p+1))((p−1)/p))) =((p^2 −p^2 +1)/(p^2 +p+p^2 −p)) =(1/(2p^2 )) .  2) we have arctan((1/(2p^2 )))=arctan((p/(p+1)))−arctan(((p−1)/p))  we haveS_n =Σ_(p=1) ^n  arctan((1/(2p^2 ))) ⇒  S_n =Σ_(p=1) ^n (arctan((p/(p+1)))−arctan(((p−1)/p)))  =Σ_(p=1) ^n  (U_p −U_(p−1) )         (U_p =arctan((p/(p+1))))  =U_1 −U_0 +U_2 −U_1 +....+U_n −U_(n−1)   =U_n −U_1 =arctan((n/(n+1)))−arctan((1/2)) ⇒  lim_(n→+∞)  S_n =(π/4) −arctan((1/2)).
wehavetan(arctan(pp+1)arctan(p1p))=pp+1p1p1+pp+1p1p=p2p2+1p2+p+p2p=12p2.2)wehavearctan(12p2)=arctan(pp+1)arctan(p1p)wehaveSn=p=1narctan(12p2)Sn=p=1n(arctan(pp+1)arctan(p1p))=p=1n(UpUp1)(Up=arctan(pp+1))=U1U0+U2U1+.+UnUn1=UnU1=arctan(nn+1)arctan(12)limn+Sn=π4arctan(12).

Leave a Reply

Your email address will not be published. Required fields are marked *