Menu Close

1-let-U-n-k-0-n-1-k-1-1-1-1-n-1-terms-is-lim-n-U-n-exist-find-U-n-by-using-integr-part-2-let-V-n-k-1-n-k-1-k-1-2-3-4-nterms-is-lim-n-V-n-exist




Question Number 61536 by maxmathsup by imad last updated on 04/Jun/19
1)let U_n =Σ_(k=0) ^n (−1)^k  =1−1+1−1+...(n+1 terms)  is lim_(n→+∞) U_n exist ?  find U_n  by using integr part[..]  2) let V_n = Σ_(k=1) ^n k(−1)^k   = −1+2 −3+4+.....(nterms)  is lim_(n→+∞) V_n  exist   find V_n by using integr part[..]
1)letUn=k=0n(1)k=11+11+(n+1terms)islimn+Unexist?findUnbyusingintegrpart[..]2)letVn=k=1nk(1)k=1+23+4+..(nterms)islimn+VnexistfindVnbyusingintegrpart[..]
Commented by maxmathsup by imad last updated on 04/Jun/19
1) we have for x≠1   Σ_(k=0) ^n  x^k  =((1−x^(n+1) )/(1−x)) ⇒Σ_(k=0) ^n (−1)^k  =((1−(−1)^(n+1) )/2)  ⇒ U_n =(1/2) +(((−1)^n )/2)     the sequence (−1)^n  is not convergent  so U_n dont converges  but we have  lim_(n→+∞)    U_(2n) =1   and lim_(n→+∞)   U_(2n+1) =0  2) we have V_n =w(−1)  with  w(x) =Σ_(k=1) ^n  k x^k  =Σ_(k=0) ^n  kx^k   we have Σ_(k=0) ^n  x^k  =((x^(n+1) −1)/(x−1)) ⇒Σ_(k=1) ^n  kx^(k−1)  =(((n+1)x^n (x−1)−(x^(n+1) −1)×1)/((x−1)^2 ))  =(((n+1)x^(n+1) −(n+1)x^n −x^(n+1)  +1)/((x−1)^2 )) =((nx^(n+1) −(n+1)x^n  +1)/((x−1)^2 ))  ⇒  V_n =((n(−1)^(n+1) −(n+1)(−1)^n  +1)/4) =((−n(−1)^n −(n+1)(−1)^n  +1)/4)  =((1−(2n+1)(−1)^n )/4)   its clear that V_n  is not convergent but we see  V_(2n) =((1−(2n+1))/4) →−∞    and  V_(2n+1) =((1+2n+1)/4) =((n+1)/2) →+∞   (n→+∞)
1)wehaveforx1k=0nxk=1xn+11xk=0n(1)k=1(1)n+12Un=12+(1)n2thesequence(1)nisnotconvergentsoUndontconvergesbutwehavelimn+U2n=1andlimn+U2n+1=02)wehaveVn=w(1)withw(x)=k=1nkxk=k=0nkxkwehavek=0nxk=xn+11x1k=1nkxk1=(n+1)xn(x1)(xn+11)×1(x1)2=(n+1)xn+1(n+1)xnxn+1+1(x1)2=nxn+1(n+1)xn+1(x1)2Vn=n(1)n+1(n+1)(1)n+14=n(1)n(n+1)(1)n+14=1(2n+1)(1)n4itsclearthatVnisnotconvergentbutweseeV2n=1(2n+1)4andV2n+1=1+2n+14=n+12+(n+)

Leave a Reply

Your email address will not be published. Required fields are marked *