Menu Close

1-Let-z-3-4i-3-4i-where-square-root-is-taken-with-positive-real-part-Then-Re-z-is-a-3-b-4-c-2-d-1-2-Suppose-a-b-c-are-in-AP-and-a-2-b-2-c-2-are-in-GP-If




Question Number 112364 by john santu last updated on 07/Sep/20
(1) Let z = (√(3+4i)) + (√(−3−4i)) , where  square root is taken with positive   real part. Then Re(z) is _  (a)3     (b) 4     (c) 2     (d) 1  (2)Suppose a,b,c are in AP and a^2 ,b^2 ,c^2   are in GP. If a<b<c and a+b+c=(3/2),  then a = _  (a) (1/(2(√2)))     (b) (1/(2(√3)))    (c) (((√3)−2)/(2(√3)))    (d) (((√2)−2)/(2(√2)))  (3)A man sent 7 letters to his 7 friend  . The letters are kept in addressed   envelopes at random. The probability  that 3 friend receive correct letters  and 4 letters go to wrong destination  is _  (a) (1/8)     (b) (1/(16))   (c) (3/(32))     (d) (5/(64))
(1)Letz=3+4i+34i,wheresquarerootistakenwithpositiverealpart.ThenRe(z)is_(a)3(b)4(c)2(d)1(2)Supposea,b,careinAPanda2,b2,c2areinGP.Ifa<b<canda+b+c=32,thena=_(a)122(b)123(c)3223(d)2222(3)Amansent7letterstohis7friend.Thelettersarekeptinaddressedenvelopesatrandom.Theprobabilitythat3friendreceivecorrectlettersand4lettersgotowrongdestinationis_(a)18(b)116(c)332(d)564
Answered by MJS_new last updated on 07/Sep/20
(√z) is unique  (√(3+4i))=2+i  (√(−3−4i))=1−2i  ⇒ z=3−i
zisunique3+4i=2+i34i=12iz=3i
Commented by MJS_new last updated on 07/Sep/20
x^2 =4  we′re looking for all possible numbers x which  solve the equation ⇒ x=±2  2^2  we just square without caring if or if not  (any other number)^2 =2^2 =4    (√x)=2  we′re looking for all possible numbers x which  solve the equation ⇒ x=4 (try to find another  solution x∈C)  (√4) we just extract the root without caring if  or if not (√(any other number))=(√4)=2    so there′s no equation given, nothing to  solve when we just calculate 7^2  or (√(49))    btw. there′s no solution to (√x)=−4 (try it)    z=re^(iθ)  with r≥0 and θ∈R  z^q =r^q e^(iqθ)  nothing to solve with z, q given  there′s an exception made to keep geometric  problems real:  z^(1/n)  with z<0 and n=2k+1∧k∈Z  ⇒ z=−(−z)^(1/n)   or z=re^(iπ)  ⇒ z^(1/(2k+1)) =r^(1/(2k+1)) e^(iπ)  not r^(1/(2k+1)) e^((iπ)/(2k+1))
x2=4werelookingforallpossiblenumbersxwhichsolvetheequationx=±222wejustsquarewithoutcaringiforifnot(anyothernumber)2=22=4x=2werelookingforallpossiblenumbersxwhichsolvetheequationx=4(trytofindanothersolutionxC)4wejustextracttherootwithoutcaringiforifnotanyothernumber=4=2sotheresnoequationgiven,nothingtosolvewhenwejustcalculate72or49btw.theresnosolutiontox=4(tryit)z=reiθwithr0andθRzq=rqeiqθnothingtosolvewithz,qgiventheresanexceptionmadetokeepgeometricproblemsreal:z1nwithz<0andn=2k+1kZz=(z)1norz=reiπz12k+1=r12k+1eiπnotr12k+1eiπ2k+1
Commented by john santu last updated on 08/Sep/20
greatt
greatt

Leave a Reply

Your email address will not be published. Required fields are marked *