Menu Close

1-lim-n-1-n-2-1-1-n-2-2-1-n-2-3-1-n-2-n-1-2-lim-n-2-n-1-n-1-n-n-2-




Question Number 122152 by liberty last updated on 14/Nov/20
 (1) lim_(n→∞)  ((1/( (√(n^2 +1))))+(1/( (√(n^2 +2))))+(1/( (√(n^2 +3))))+...+(1/( (√(n^2 +n+1)))) ) =?  (2) lim_(n→∞)  (((2 (n)^(1/n)  −1)^n )/n^2 ) =?
(1)limn(1n2+1+1n2+2+1n2+3++1n2+n+1)=?(2)limn(2nn1)nn2=?
Answered by benjo_mathlover last updated on 14/Nov/20
(1) lim_(n→∞)  ((1/( (√(n^2 +1))))+(1/( (√(n^2 +2))))+(1/( (√(n^2 +3))))+...+(1/( (√(n^2 +n+1)))))  note that   ((n+1)/( (√(n^2 +n+1)))) ≤ (1/( (√(n^2 +1))))+(1/( (√(n^2 +2))))+...+(1/( (√(n^2 +n+1)))) ≤ ((n+1)/( (√(n^2 +1))))  This and the squeeze law for sequences  imply that the limit is 1.  lim_(n→∞)  ((n(1+(1/n)))/(n (√(1+(1/n)+(1/n^2 ))))) = lim_(n→∞)  ((n(1+(1/n)))/(n (√(1+(1/n^2 ))))) = 1.
(1)limn(1n2+1+1n2+2+1n2+3++1n2+n+1)notethatn+1n2+n+11n2+1+1n2+2++1n2+n+1n+1n2+1Thisandthesqueezelawforsequencesimplythatthelimitis1.limnn(1+1n)n1+1n+1n2=limnn(1+1n)n1+1n2=1.
Commented by liberty last updated on 14/Nov/20
thanks
thanks
Answered by mathmax by abdo last updated on 14/Nov/20
U_n =(((2 n^(1/n) −1)^n )/n^2 ) ⇒ U_n =(((2n^(1/n) −1)^n )/((n^(2/n) )^n )) =(((2n^(1/n) −1)/n^(2/n) ))^n   =(2 n^(−(1/n))  −n^(−(2/n)) )^n  ⇒U_n =e^(nlog(2 n^(−(1/n)) −n^((−2)/n) ))   v_n =nlog(2.n^(−(1/n)) −n^(−(2/n)) ) ⇒v_n =nlog(2n^(−(1/n)) {1−(1/2) n^(−(1/n)) })  =nlog(2 n^(−(1/n)) )+n log(1−(1/(2n^(1/n) ))) =nlog2−logn +nlog(1−(1/(2n^(1/n) )))  2n^(1/n)  =2 e^((logn)/n)  →2 ⇒log(1−(1/(2n^(1/n) )))→−nlog2 ⇒lim_(n→+∞) v_n =−∞ ⇒  lim_(n→+∞)  U_n =e^(−∞)  =0
Un=(2n1n1)nn2Un=(2n1n1)n(n2n)n=(2n1n1n2n)n=(2n1nn2n)nUn=enlog(2n1nn2n)vn=nlog(2.n1nn2n)vn=nlog(2n1n{112n1n})=nlog(2n1n)+nlog(112n1n)=nlog2logn+nlog(112n1n)2n1n=2elognn2log(112n1n)nlog2limn+vn=limn+Un=e=0

Leave a Reply

Your email address will not be published. Required fields are marked *