Menu Close

1-lim-x-0-0-x-2-sec-2-t-dt-x-sin-x-2-pi-2-pi-2-sec-x-cos-x-dx-3-In-a-triangle-if-tan-A-2sin-2C-and-3cos-A-2sin-Bsin-C-find-C-




Question Number 105504 by bemath last updated on 29/Jul/20
(1)lim_(x→0) ((∫_( 0) ^( x^2 ) sec^2 t dt)/(x sin x)) ?  (2) ∫_(−π/2) ^(π/2) (√(sec x−cos x)) dx ?  (3)In a triangle if tan A=2sin 2C  and 3cos A=2sin Bsin C. find C
(1)limx00x2sec2tdtxsinx?(2)π/2π/2secxcosxdx?(3)InatriangleiftanA=2sin2Cand3cosA=2sinBsinC.findC
Answered by Dwaipayan Shikari last updated on 29/Jul/20
1)lim_(x→0) ((∫_0 ^x^2  sec^2 tdt)/(xsinx))=lim_(x→0) (([tan t]_0 ^x^2  )/x^2 )                  {    sinx→x  =lim_(x→0) ((tan x^2 )/x^2 )=1
1)limx00x2sec2tdtxsinx=limx0[tant]0x2x2{sinxx=limx0tanx2x2=1
Answered by john santu last updated on 29/Jul/20
(1)lim_(x→0)  ((2x sec^2 (x^2 ))/(sin x+x cos x)) =  lim_(x→0)  ((2x)/(sin (x)cos^2 (x^2 )+x cos x)) =  lim_(x→0) (2/((((sin x)/x))cos^2 (x^2 )+cos x)) = (2/(1+1))=1  (JS ♠★)
(1)limx02xsec2(x2)sinx+xcosx=limx02xsin(x)cos2(x2)+xcosx=limx02(sinxx)cos2(x2)+cosx=21+1=1(JS)
Answered by Ar Brandon last updated on 29/Jul/20
1\lim_(x→0) ((∫_0 ^x^2  sec^2 tdt)/(xsinx))=lim_(x→0) (([tanx]_0 ^x^2  )/(xsinx))=lim_(x→0) ((tanx^2 )/(xsinx))                                   =lim_(x→0) (x^2 /(xsinx))=lim_(x→0) (x/(sinx))=lim_(x→0) (1/(cosx))=1
1limx00x2sec2tdtxsinx=limx0[tanx]0x2xsinx=limx0tanx2xsinx=limx0x2xsinx=limx0xsinx=limx01cosx=1
Answered by Dwaipayan Shikari last updated on 29/Jul/20
∫_(−(π/2)) ^(π/2) ((√(1−cos^2 x))/( (√(cosx))))=−2∫_0 ^(π/2) −((sinx)/( (√(cosx))))dx=−2∫_1 ^0 ((2tdt)/t)=4∫_0 ^1 dt=4                                     cos x=t^2
π2π21cos2xcosx=20π2sinxcosxdx=2102tdtt=401dt=4cosx=t2
Commented by Dwaipayan Shikari last updated on 29/Jul/20
Hey Brandon sir , can you take a try on my question?�� Question no 105498
Commented by Ar Brandon last updated on 29/Jul/20
��OK bro, but I'm not Sir. Next 2 years I'll be thrice as old as I was e^2.3 years ago to the nearest round figure.��
Commented by Dwaipayan Shikari last updated on 29/Jul/20
����������My current age is e^2.79
Commented by Dwaipayan Shikari last updated on 29/Jul/20
A high school one
Commented by Ar Brandon last updated on 29/Jul/20
��
Answered by Ar Brandon last updated on 29/Jul/20
I=∫_(−(π/2)) ^(π/2) (√(secx−cosx))dx=2∫_0 ^(π/2) (√((1−cos^2 x)/(cosx)))dx=2∫_0 ^(π/2) ((sinx)/( (√(cosx))))dx     =−2∫_0 ^(π/2) ((d(cosx))/( (√(cosx))))=−4[(√(cosx))]_0 ^(π/2) =4
I=π2π2secxcosxdx=20π21cos2xcosxdx=20π2sinxcosxdx=20π2d(cosx)cosx=4[cosx]0π2=4
Answered by mathmax by abdo last updated on 29/Jul/20
1)let f(x) =((∫_0 ^x^2   sec^2 tdt)/(xsinx)) ⇒f(x) =((tan(x^2 ))/(xsinx)) ∼ (x^2 /x^2 ) =1 ⇒  lim_(x→0) f(x) =1
1)letf(x)=0x2sec2tdtxsinxf(x)=tan(x2)xsinxx2x2=1limx0f(x)=1
Answered by mathmax by abdo last updated on 29/Jul/20
2) I =∫_(−(π/2)) ^(π/2) (√((1/(cosx))−cosx))dx =∫_(−(π/2)) ^(π/2) (√((1−cos^2 x)/(cosx)))dx  =2∫_0 ^(π/2) ((sinx)/( (√(cosx)))) dx   =_((√(cosx))=t) −   2 ∫_1 ^0  ((√(1−t^4 ))/t)((2t)/( (√(1−t^4 )))) dt =4 ∫_0 ^1  dt =4  (cosx =t^2  ⇒x =arcos(t^2 ))
2)I=π2π21cosxcosxdx=π2π21cos2xcosxdx=20π2sinxcosxdx=cosx=t2101t4t2t1t4dt=401dt=4(cosx=t2x=arcos(t2))
Answered by bramlex last updated on 29/Jul/20
(3) A = 180°−(B+C)  cos A=−cos (B+C)  →((2sin B sin C)/3) =−{ cos B cos C−sinB sinC}  2sin B sin C = −3cos B cos C−3sinB sin C  5sin B sin C = −3 cos B cos C  →tan B tan C = −(3/5)...(1)  tan A = −tan (B+C)  →2sin 2C = −{((tan B+tan C)/(1−tan Btan C))}  →2sin 2C = −{((tan B+tan C)/(8/5))}  ((16)/5) sin 2C = −tan B−tan C ...(2)
(3)A=180°(B+C)cosA=cos(B+C)2sinBsinC3={cosBcosCsinBsinC}2sinBsinC=3cosBcosC3sinBsinC5sinBsinC=3cosBcosCtanBtanC=35(1)tanA=tan(B+C)2sin2C={tanB+tanC1tanBtanC}2sin2C={tanB+tanC85}165sin2C=tanBtanC(2)
Answered by Ar Brandon last updated on 29/Jul/20
3\  A+B+C=π.........(1)  tanA=2sin2C......(2)  3cosA=2sinBsinC(3)  (1) in (3)⇒3cosA=2sin(π−(A+C))sinC    ⇒3cosA=2sin(A+B)sinC    ⇒−3cosA=cos(A+2C)−cosA    ⇒−2cosA=cos(A+2C)  From (2), tanA=2sin2C    ⇒sinA=2sin2CcosA    ⇒sinA=sin(A+2C)+sin(A−2C)                Stucked !!!
3A+B+C=π(1)tanA=2sin2C(2)3cosA=2sinBsinC(3)(1)in(3)3cosA=2sin(π(A+C))sinC3cosA=2sin(A+B)sinC3cosA=cos(A+2C)cosA2cosA=cos(A+2C)From(2),tanA=2sin2CsinA=2sin2CcosAsinA=sin(A+2C)+sin(A2C)Stucked!!!

Leave a Reply

Your email address will not be published. Required fields are marked *