Menu Close

1-lim-x-0-tan-pi-4-x-cotx-2-lim-x-0-1-sin-x-1-x-




Question Number 167617 by mathlove last updated on 21/Mar/22
(1)lim_(x→0) [tan((π/4)−x)]^(cotx) =?  (2)lim_(x→0) [(1/(sin x))−(1/x)]=?
(1)limx0[tan(π4x)]cotx=?(2)limx0[1sinx1x]=?
Answered by cortano1 last updated on 21/Mar/22
(2) lim_(x→0)  (((x−sin x)/(xsin x))) = lim_(x→0)  (((x−sin x)/(x^2 (((sin x)/x)))))        = lim_(x→0)  (((x−sin x)/x^2 ))=lim_(x→0)  (((1−cos x)/(2x)))      = 0
(2)limx0(xsinxxsinx)=limx0(xsinxx2(sinxx))=limx0(xsinxx2)=limx0(1cosx2x)=0
Answered by LEKOUMA last updated on 21/Mar/22
(2) lim_(x→0) ((1/(sin x))−(1/x))  lim_(x→0) ((x/(xsin x))−((sin x)/(xsin x)))=lim_(x→0) (((x−sin x)/(xsin x)))  Hospital  lim_(x→0) ((((x−sin x)′)/((xsin x)′)))=lim_(x→0) ((((x)′−(sin x)′)/((xsin x)′)))  lim_(x→0  ) ((1−cos x)/(sin x+xcos x))=lim_(x→0  ) (((1−cos x)/x)/(((sin x)/x)+cos x))=(0/(1+1))=(0/2)=0  lim_(x→0) ((1/(sin x))−(1/x))=0
(2)limx0(1sinx1x)limx0(xxsinxsinxxsinx)=limx0(xsinxxsinx)Hospitallimx0((xsinx)(xsinx))=limx0((x)(sinx)(xsinx))limx01cosxsinx+xcosx=limx01cosxxsinxx+cosx=01+1=02=0limx0(1sinx1x)=0
Answered by qaz last updated on 21/Mar/22
lim_(x→0) [tan ((π/4)−x)]^(cot x) =lim_(x→0) (((cot x−1)/(cot x+1)))^(cot x) =lim_(x→0) [(1−(2/(cot x+1)))^((cot x+1)/2) ]^2 (1−(2/(cot x+1)))^(−1) =e^(−2)
limx0[tan(π4x)]cotx=limx0(cotx1cotx+1)cotx=limx0[(12cotx+1)cotx+12]2(12cotx+1)1=e2

Leave a Reply

Your email address will not be published. Required fields are marked *