1-lim-x-0-tan-pi-4-x-cotx-2-lim-x-0-1-sin-x-1-x- Tinku Tara June 4, 2023 Limits 0 Comments FacebookTweetPin Question Number 167617 by mathlove last updated on 21/Mar/22 (1)limx→0[tan(π4−x)]cotx=?(2)limx→0[1sinx−1x]=? Answered by cortano1 last updated on 21/Mar/22 (2)limx→0(x−sinxxsinx)=limx→0(x−sinxx2(sinxx))=limx→0(x−sinxx2)=limx→0(1−cosx2x)=0 Answered by LEKOUMA last updated on 21/Mar/22 (2)limx→0(1sinx−1x)limx→0(xxsinx−sinxxsinx)=limx→0(x−sinxxsinx)Hospitallimx→0((x−sinx)′(xsinx)′)=limx→0((x)′−(sinx)′(xsinx)′)limx→01−cosxsinx+xcosx=limx→01−cosxxsinxx+cosx=01+1=02=0limx→0(1sinx−1x)=0 Answered by qaz last updated on 21/Mar/22 limx→0[tan(π4−x)]cotx=limx→0(cotx−1cotx+1)cotx=limx→0[(1−2cotx+1)cotx+12]2(1−2cotx+1)−1=e−2 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 5x-4-4x-5-x-5-x-1-2-Next Next post: Question-102085 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.