Menu Close

1-lim-x-3-3x-x-2-4x-1-2-0-1-arctan-2x-1-1-x-x-2-dx-3-how-many-integer-solution-sets-exist-for-the-equation-x-2-y-2-2-




Question Number 110307 by bemath last updated on 28/Aug/20
(1)lim_(x→−∞)  ((3−3x)/( (√(x^2 −4x+1)))) ?  (2) ∫_0 ^1  arctan (((2x−1)/(1+x−x^2 ))) dx  (3)how many integer solution sets  exist for the equation x^2 +y^2 =2
(1)limx33xx24x+1?(2)10arctan(2x11+xx2)dx(3)howmanyintegersolutionsetsexistfortheequationx2+y2=2
Answered by john santu last updated on 28/Aug/20
  ★((JS)/≈)★  let x = − t , then t→∞  lim_(t→∞)  ((3+3t)/( (√(t^2 +4t+1)))) = lim_(t→∞)  ((t(3+(3/t)))/(t(√(1+(4/t)+(1/t^2 )))))= 3
JSletx=t,thentlimt3+3tt2+4t+1=limtt(3+3t)t1+4t+1t2=3
Answered by Dwaipayan Shikari last updated on 28/Aug/20
∫_0 ^1 tan^(−1) (((x−(1−x))/(1+x(1−x))))  ∫_0 ^1 tan^(−1) x−tan^(−1) (1−x)=∫_0 ^1 tan^(−1) (1−x)−tan^(−1) x=I  2I=0  I=0
01tan1(x(1x)1+x(1x))01tan1xtan1(1x)=01tan1(1x)tan1x=I2I=0I=0
Commented by Dwaipayan Shikari last updated on 28/Aug/20
Is it right?
Isitright?
Answered by Aziztisffola last updated on 28/Aug/20
 (3) (x;y)∈{(1;1);(1;−1);(−1;1);(−1;−1)}
(3)(x;y){(1;1);(1;1);(1;1);(1;1)}
Answered by Rio Michael last updated on 28/Aug/20
 lim_(x→−∞)  ((3−3x)/( (√(x^2 −4x+1)))) = lim_(x→−∞)  ((3−3x)/(x(√(1−(4/x) + (1/x^2 )))))                                          = lim_(x→−∞)  (((3/x)−3)/( (√(1−(4/x) + (1/x^2 ))))) = −3
limx33xx24x+1=limx33xx14x+1x2=limx3x314x+1x2=3
Commented by bemath last updated on 28/Aug/20
wrong sir. x→−∞ it should be   (√(x^2  )) = −x not x
wrongsir.xitshouldbex2=xnotx
Commented by Rio Michael last updated on 28/Aug/20
correct. thanks for the correction
correct.thanksforthecorrection
Answered by 1549442205PVT last updated on 28/Aug/20
(1)lim_(x→−∞)  ((3−3x)/( (√(x^2 −4x+1)))) =lim_(x→−∞)  ((3−3x)/( (−x )  (√(1−(4/x)+(1/x^2 )))))  =lim_(x→−∞)  ((((−3)/x)+3)/( (√(1−(4/x)+(1/x^2 )))))=((0+3)/( (√(1−0+0))))=3  3)Solve x^2 +y^2 =2 in Z.  x^2 =2−y^2 ≤2 but since x∈Z,∣x∣≤1  ⇒x∈−1,1⇒y∈{±1,±1}   The solution set of the given eq.  has four elements  S={(−1,−1),(−1,1),(1,−1),(1,1)}
(1)limx33xx24x+1=limx33x(x)14x+1x2=limx3x+314x+1x2=0+310+0=33)Solvex2+y2=2inZ.x2=2y22butsincexZ,x∣⩽1x1,1y{±1,±1}Thesolutionsetofthegiveneq.hasfourelementsS={(1,1),(1,1),(1,1),(1,1)}
Answered by john santu last updated on 28/Aug/20
(2)∫ tan^(−1) (((2x−1)/(1+x−x^2 ))) dx = I  setting x = u−(1/2)  I=∫_(−1/2) ^(1/2) tan^(−1) (((2u)/((5/4)−u^2 ))) du   since the resulting integrand is  a continous odd function , so we got  I = 0.
(2)tan1(2x11+xx2)dx=Isettingx=u12I=1/21/2tan1(2u54u2)dusincetheresultingintegrandisacontinousoddfunction,sowegotI=0.

Leave a Reply

Your email address will not be published. Required fields are marked *