Menu Close

1-lim-x-a-x-a-cosec-pix-a-2-x-2-1-dx-by-using-Euler-s-substitution-




Question Number 112651 by bemath last updated on 09/Sep/20
(1)lim_(x→a)  (x−a) cosec (((πx)/a)) ?  (2) ∫ (√(x^2 +1)) dx , by using Euler′s  substitution
(1)limxa(xa)cosec(πxa)?(2)x2+1dx,byusingEulerssubstitution
Answered by john santu last updated on 09/Sep/20
(★) by Euler′s substitution   let (√(x^2 +1)) = x+q ⇒x^2 +1 = x^2 +2qx+q^2     2qx+q^2  = 1 ⇒x = ((1−q^2 )/(2q))    dx = ((−4q^2 −2(1−q^2 ))/(4q^2 )) dq    dx = ((−2q^2 −2)/(4q^2 )) dq = ((−q^2 −1)/(2q^2 )) dq  so I = ∫ (√(x^2 +1)) dx   I= ∫ (((1−q^2 )/(2q))+q).(((−q^2 −1)/(2q^2 )))dq  I= −∫ (((q^2 +1)/(2q)))(((q^2 +1)/(2q^2 )))dq  I=−(1/4)∫ (((q^4 +2q^2 +1)/q^3 ))dq  I=−(1/4)∫ (q+(2/q)+q^(−3) )dq  I=−(1/4)((1/2)q^2 +2ln (q)−(1/(2q^2 )))+c  I=−(1/8)((√(x^2 +1))−x)^2 −(1/2)ln ∣(√(x^2 +1))−x∣+(1/(8((√(x^2 +1))−x)^2 )) + c
()byEulerssubstitutionletx2+1=x+qx2+1=x2+2qx+q22qx+q2=1x=1q22qdx=4q22(1q2)4q2dqdx=2q224q2dq=q212q2dqsoI=x2+1dxI=(1q22q+q).(q212q2)dqI=(q2+12q)(q2+12q2)dqI=14(q4+2q2+1q3)dqI=14(q+2q+q3)dqI=14(12q2+2ln(q)12q2)+cI=18(x2+1x)212lnx2+1x+18(x2+1x)2+c
Answered by bobhans last updated on 09/Sep/20
(⧫) lim_(x→a)  (x−a) cosec (((πx)/a)) = L   L= lim_(x→a)  (((x−a))/(sin (((πx)/a))))= lim_(x→a)  (1/((π/a)cos (((πx)/a))))   L = (a/π) lim_(x→a)  (1/(cos (((πx)/a)))) = −(a/π)
()limxa(xa)cosec(πxa)=LL=limxa(xa)sin(πxa)=limxa1πacos(πxa)L=aπlimxa1cos(πxa)=aπ
Answered by 1549442205PVT last updated on 10/Sep/20
2)Find ∫(√(x^2 +1)) dx   Put x=tant⇒dx=(1+tan^2 t)dt.Then  F=∫(√(x^2 +1)) dx=∫(√(1+tan^2 t)) (1+tan^2 t)dt  F=∫(dt/(cos^3 t))dt=(1/2)∫(1/(sint))×((2sintcost)/(cos^4 t))dt  =(1/2)∫(1/(sint))d((1/(cos^2 t)))=(1/2)×(1/(sintcos^2 t))  −(1/2)∫(1/(cos^2 t)).((1/(sint)))′dt=(1/2)×(1/(sintcos^2 t))  −(1/2)∫(1/(cos^2 t)).(−(1/(sin^2 t)))×costdt  =(1/2)×(1/(sintcos^2 t))+(1/2)∫((d(sint))/(cos^2 tsin^2 t))  Put sint=u we get  (1/2)∫((d(sint))/(cos^2 tsin^2 t))=(1/2)∫(du/(u^2 (1−u^2 )))  =(1/2)∫((1/u^2 )+(1/(1−u^2 )))du=−(1/(2u))−(1/2)∫(du/(u^2 −1))  =((−1)/(2u))−(1/2)×(1/2)ln∣((u−1)/(u+1))∣.Therefore,  F=(1/(2sintcos^2 t))−(1/(2sint))−(1/4)ln∣((sint−1)/(sint+1))∣+C  x=tant⇔cos^2 t=(1/(1+x^2 )),sint =((∣x∣)/( (√(1+x^2 ))))  F=((∣x∣(√(1+x^2 )))/2)−(1/4)ln∣((∣x∣−(√(1+x^2 )))/(∣x∣+(√( 1+x^2 ))))∣+C  Also see question 112313
2)Findx2+1dxPutx=tantdx=(1+tan2t)dt.ThenF=x2+1dx=1+tan2t(1+tan2t)dtF=dtcos3tdt=121sint×2sintcostcos4tdt=121sintd(1cos2t)=12×1sintcos2t121cos2t.(1sint)dt=12×1sintcos2t121cos2t.(1sin2t)×costdt=12×1sintcos2t+12d(sint)cos2tsin2tPutsint=uweget12d(sint)cos2tsin2t=12duu2(1u2)=12(1u2+11u2)du=12u12duu21=12u12×12lnu1u+1.Therefore,F=12sintcos2t12sint14lnsint1sint+1+Cx=tantcos2t=11+x2,sint=x1+x2F=x1+x2214lnx1+x2x+1+x2+CAlsoseequestion112313

Leave a Reply

Your email address will not be published. Required fields are marked *