1-lim-x-a-x-a-cosec-pix-a-2-x-2-1-dx-by-using-Euler-s-substitution- Tinku Tara June 4, 2023 Limits 0 Comments FacebookTweetPin Question Number 112651 by bemath last updated on 09/Sep/20 (1)limx→a(x−a)cosec(πxa)?(2)∫x2+1dx,byusingEuler′ssubstitution Answered by john santu last updated on 09/Sep/20 (★)byEuler′ssubstitutionletx2+1=x+q⇒x2+1=x2+2qx+q22qx+q2=1⇒x=1−q22qdx=−4q2−2(1−q2)4q2dqdx=−2q2−24q2dq=−q2−12q2dqsoI=∫x2+1dxI=∫(1−q22q+q).(−q2−12q2)dqI=−∫(q2+12q)(q2+12q2)dqI=−14∫(q4+2q2+1q3)dqI=−14∫(q+2q+q−3)dqI=−14(12q2+2ln(q)−12q2)+cI=−18(x2+1−x)2−12ln∣x2+1−x∣+18(x2+1−x)2+c Answered by bobhans last updated on 09/Sep/20 (⧫)limx→a(x−a)cosec(πxa)=LL=limx→a(x−a)sin(πxa)=limx→a1πacos(πxa)L=aπlimx→a1cos(πxa)=−aπ Answered by 1549442205PVT last updated on 10/Sep/20 2)Find∫x2+1dxPutx=tant⇒dx=(1+tan2t)dt.ThenF=∫x2+1dx=∫1+tan2t(1+tan2t)dtF=∫dtcos3tdt=12∫1sint×2sintcostcos4tdt=12∫1sintd(1cos2t)=12×1sintcos2t−12∫1cos2t.(1sint)′dt=12×1sintcos2t−12∫1cos2t.(−1sin2t)×costdt=12×1sintcos2t+12∫d(sint)cos2tsin2tPutsint=uweget12∫d(sint)cos2tsin2t=12∫duu2(1−u2)=12∫(1u2+11−u2)du=−12u−12∫duu2−1=−12u−12×12ln∣u−1u+1∣.Therefore,F=12sintcos2t−12sint−14ln∣sint−1sint+1∣+Cx=tant⇔cos2t=11+x2,sint=∣x∣1+x2F=∣x∣1+x22−14ln∣∣x∣−1+x2∣x∣+1+x2∣+CAlsoseequestion112313 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: calculate-0-1-x-2-1-ln-x-x-2-2x-1-x-2-2x-1-dx-Next Next post: let-u-n-e-nx-2-x-dx-1-calculate-u-n-2-find-n-u-n- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.