Menu Close

1-lim-x-e-x-e-x-2-x-2-lim-x-pi-2-cos-x-x-pi-2-3-lim-x-0-1-tan-x-x-2-1-sin-x-x-2-




Question Number 112273 by bemath last updated on 07/Sep/20
 (1)  lim_(x→∞) (e^x +e^(−x) )^(2/x)  =?  (2) lim_(x→(π/2)) (cos x)^(−x+(π/2)) ?  (3) lim_(x→0)  (√((1+tan x)/x^2 ))−(√(((1−sin x)/x^2 ) ))?
(1)limx(ex+ex)2x=?(2)limxπ2(cosx)x+π2?(3)limx01+tanxx21sinxx2?
Commented by Dwaipayan Shikari last updated on 07/Sep/20
e^(−2) (1+e^(2x) )^(2/x) =y  −2+(2/x)log(1+e^(2x) )=logy  −2+((4e^(2x) )/(1+e^(2x) ))=logy  −2+4(1−(1/(1+e^(2x) )))=logy  −2+4=logy  y=e^2
e2(1+e2x)2x=y2+2xlog(1+e2x)=logy2+4e2x1+e2x=logy2+4(111+e2x)=logy2+4=logyy=e2
Commented by Dwaipayan Shikari last updated on 07/Sep/20
lim_(x→(π/2)) (cosx)^(−x+(π/2)) =y  ⇒−(x−(π/2))log(cosx)=logy  ⇒−(x−(π/2))(cosx−1)((log(1+cosx−1))/(cosx−1))=logy  ⇒2(x−(π/2))sin^2 (x/2)=logy  ⇒logy=0  y=1
limxπ2(cosx)x+π2=y(xπ2)log(cosx)=logy(xπ2)(cosx1)log(1+cosx1)cosx1=logy2(xπ2)sin2x2=logylogy=0y=1
Answered by bemath last updated on 07/Sep/20
Commented by mohammad17 last updated on 07/Sep/20
sir in step four (((tanx+sinx)/(∣x∣))) not (((tanx−sinx)/(∣x∣)))
sirinstepfour(tanx+sinxx)not(tanxsinxx)
Commented by bemath last updated on 07/Sep/20
oo yes you are right
ooyesyouareright

Leave a Reply

Your email address will not be published. Required fields are marked *