Menu Close

1-lim-x-pi-2-cos-2x-tan-x-2-lim-x-pi-2-cos-x-1-pi-x-2-




Question Number 115604 by bemath last updated on 27/Sep/20
(1)lim_(x→(π/2))  ((cos 2x)/(tan x)) =?  (2) lim_(x→π)  (((√(2 +cos x)) −1)/((π−x)^2 )) = ?
(1)limxπ2cos2xtanx=?(2)limxπ2+cosx1(πx)2=?
Commented by Dwaipayan Shikari last updated on 27/Sep/20
lim_(x→π) ((2+cosx−1)/((π−x)^2 )).(1/( (√(2+cosx))+1))=(1/4) ((2cos^2 (x/2))/(((π/2)−(x/2))^2 )).(1/2)  =(1/4).((sin^2 ((π/2)−(x/2)))/(((π/2)−(x/2))^2 ))=(1/4)
limxπ2+cosx1(πx)2.12+cosx+1=142cos2x2(π2x2)2.12=14.sin2(π2x2)(π2x2)2=14
Answered by bobhans last updated on 27/Sep/20
(2) lim_(x→π)  (((−sin x)/(2(√(2+cos x))))/(−2(π−x))) = lim_(x→π)  (1/(4(√(2+cos x)))) ×lim_(x→π)  ((sin x)/(π−x))  =(1/4)×lim_(x→π)  ((cos x)/(−1)) = −(1/4)×(−1)=(1/4)
(2)limxπsinx22+cosx2(πx)=limxπ142+cosx×limxπsinxπx=14×limxπcosx1=14×(1)=14
Answered by Olaf last updated on 27/Sep/20
(2)  x = π−u  lim_(u→0) (((√(2−cosu))−1)/u^2 )  lim_(u→0) (((√(2−(1−(u^2 /2))))−1)/u^2 )  lim_(u→0) (((√(1+(u^2 /2)))−1)/u^2 )  lim_(u→0) ((1+(u^2 /4)−1)/u^2 )  lim_(u→0) ((u^2 /4)/u^2 ) = (1/4)
(2)x=πulimu02cosu1u2limu02(1u22)1u2limu01+u221u2limu01+u241u2limu0u24u2=14
Answered by mathmax by abdo last updated on 27/Sep/20
let f(x)=((cos(2x))/(tanx))  changement t =x−(π/2) give  f(x) =((cos(2(t+(π/2))))/(tan(t+(π/2)))) =−((cos(2t))/(−(1/(tant)))) =tant .cos(2t)  (x→(π/2) ⇒t →0) ⇒tan(t)∼t  and cos(2t) ∼1−2t^2  ⇒  tant.cos(2t)∼t(1−2t^2 )→0 ⇒lim_(x→(π/2)) f(x)=0
letf(x)=cos(2x)tanxchangementt=xπ2givef(x)=cos(2(t+π2))tan(t+π2)=cos(2t)1tant=tant.cos(2t)(xπ2t0)tan(t)tandcos(2t)12t2tant.cos(2t)t(12t2)0limxπ2f(x)=0
Answered by mathmax by abdo last updated on 27/Sep/20
2) let g(x)=(((√(2+cosx))−1)/((π−x)^2 ))  we do the changement π−x=t ⇒  g(x)=g(π−t) =(((√(2+cos(π−t)))−1)/t^2 ) =(((√(2−cost))−1)/t^2 )  we have cost ∼1−(t^2 /2) ⇒−cost ∼−1+(t^2 /2) ⇒2−cost ∼1+(t^2 /2)  ⇒(√(2−cost))∼(√(1+(t^2 /2)))∼1+(t^2 /4) ⇒g(π−t)∼(t^2 /(4t^2 ))=(1/4) ⇒  lim_(t→0)   g(π−t) =(1/4) =lim_(x→π)   g(x)
2)letg(x)=2+cosx1(πx)2wedothechangementπx=tg(x)=g(πt)=2+cos(πt)1t2=2cost1t2wehavecost1t22cost1+t222cost1+t222cost1+t221+t24g(πt)t24t2=14limt0g(πt)=14=limxπg(x)
Answered by bobhans last updated on 27/Sep/20
(1) set x = z+(π/2)  lim_(z→0)  ((cos (2z+π))/(tan (z+(π/2)))) = lim_(z→0)  ((−cos 2z)/(−cot z))  = lim_(z→0)  tan z. cos 2z = 0.
(1)setx=z+π2limz0cos(2z+π)tan(z+π2)=limz0cos2zcotz=limz0tanz.cos2z=0.
Answered by Olaf last updated on 27/Sep/20
lim_(x→(π/2))  cos2x = −1  lim_(x→(π/2))  tanx = ±∞  ⇒ lim_(x→(π/2))  ((cos2x)/(tanx)) = 0
limxπ2cos2x=1limxπ2tanx=±limxπ2cos2xtanx=0

Leave a Reply

Your email address will not be published. Required fields are marked *