Menu Close

1-lim-x-pi-2-cos-4x-cos-2x-2-2x-pi-2-2-lim-x-0-sin-3x-sin-6x-sin-9x-x-3-3-lim-x-pi-4-sec-2-x-2tan-x-x-pi-4-2-4-lim-x-0-12-6x-2-12cos-x-x-4-5-lim-x-




Question Number 147093 by liberty last updated on 18/Jul/21
(1)lim_(x→π/2)  ((cos 4x−cos 2x−2)/((2x−π)^2 )) =?  (2)lim_(x→0) ((sin 3x+sin 6x−sin 9x)/x^3 ) =?  (3)lim_(x→π/4) ((sec^2 x−2tan x)/((x−(π/4))^2 )) =?  (4)lim_(x→0) ((12−6x^2 −12cos x)/x^4 )=?  (5)lim_(x→0) ((sin^2 x−sin^2 2x+3x^2 )/x^4 )=?
(1)limxπ/2cos4xcos2x2(2xπ)2=?(2)limx0sin3x+sin6xsin9xx3=?(3)limxπ/4sec2x2tanx(xπ4)2=?(4)limx0126x212cosxx4=?(5)limx0sin2xsin22x+3x2x4=?
Commented by mathmax by abdo last updated on 18/Jul/21
f(x)=((cos(4x)−cos(2x)−2)/((2x−π)^2 )) ⇒f(x)=((cos(4x)−cos(2x)−2)/(4(x−(π/2))^2 ))  =_(x−(π/2)=t)    ((cos(4((π/2)+t))−cos(2((π/2)+t))−2)/(4t^2 ))=g(t)(t→0)  ⇒g(t)=((cos(4t)+cos(2t)−2)/(4t^2 )) ⇒  g(t)∼((1−(((4t)^2 )/2)+1−(((2t)^2 )/2)−2)/(4t^2 ))=((−8t^2 −2t^2 )/(4t^2 ))=((−10)/4)=−(5/2) ⇒  lim_(t→0) g(t)=−(5/2)=lim_(x→(π/2))  f(x)
f(x)=cos(4x)cos(2x)2(2xπ)2f(x)=cos(4x)cos(2x)24(xπ2)2=xπ2=tcos(4(π2+t))cos(2(π2+t))24t2=g(t)(t0)g(t)=cos(4t)+cos(2t)24t2g(t)1(4t)22+1(2t)2224t2=8t22t24t2=104=52limt0g(t)=52=limxπ2f(x)
Commented by liberty last updated on 18/Jul/21
(4)lim_(x→0) ((12−6x^2 −12(1−(x^2 /2)+(x^4 /(24))))/x^4 ) =   lim_(x→0) ((12−6x^2 −12+6x^2 −(1/2)x^4 )/x^4 ) =  lim_(x→0) ((−(1/2)x^4 )/x^4 ) = −(1/2)  By L′Hopital   lim_(x→0) ((12−6x^2 −12cos x)/x^4 ) =  lim_(x→0) ((−12x+12sin x)/(4x^3 )) =  =−3×lim_(x→0) ((x−sin x)/x^3 )   =−3×lim_(x→0) ((1−cos x)/(3x^2 ))  =−×lim_(x→0) ((2sin^2 (1/2)x)/x^2 )=−2×(1/4)  =−(1/2).
(4)limx0126x212(1x22+x424)x4=limx0126x212+6x212x4x4=limx012x4x4=12ByLHopitallimx0126x212cosxx4=limx012x+12sinx4x3==3×limx0xsinxx3=3×limx01cosx3x2=×limx02sin212xx2=2×14=12.
Answered by EDWIN88 last updated on 18/Jul/21
(1) lim_(x→(π/2)) ((cos 4x−cos 2x−2)/((2x−π)^2 ))=?  sol : let x−(π/2)= t ; x=(π/2)+t   lim_(t→0) ((cos (2π+4t)−cos (π+2t)−2)/(4t^2 ))  = lim_(t→0) ((cos 4t+cos 2t−2)/(4t^2 ))  = lim_(t→0) (((cos 4t−1)+(cos 2t−1))/(4t^2 ))  = lim_(t→0) ((−2sin^2 2t−2sin^2 t)/(4t^2 ))  =−(1/2)[lim_(t→0) (((sin 2t)/t))^2 +lim_(t→0) (((sin t)/t))^2 ]  =−(1/2)(2^2 +1^2 )=−(5/2)
(1)limxπ2cos4xcos2x2(2xπ)2=?sol:letxπ2=t;x=π2+tlimt0cos(2π+4t)cos(π+2t)24t2=limt0cos4t+cos2t24t2=limt0(cos4t1)+(cos2t1)4t2=limt02sin22t2sin2t4t2=12[limt0(sin2tt)2+limt0(sintt)2]=12(22+12)=52
Answered by EDWIN88 last updated on 18/Jul/21
(2)lim_(x→0) ((sin 3x+sin 6x−sin 9x)/x^3 )   = lim_(x→0) ((2sin (((9x)/2))cos (((3x)/2))−2sin (((9x)/2))cos (((9x)/2)))/x^3 )  let ((3x)/2) = u ; u→0 , ((9x)/2)=3u ∧x=((2u)/3)  =((27)/8)lim_(u→0) ((2sin 3u cos u−2sin 3u cos 3u)/u^3 )  = ((27)/8)lim_(u→0) ((2sin 3u(cos u−cos 3u))/u^3 )  =((27)/8){lim_(u→0) ((2sin 3u)/u) ×lim_(u→0) ((cos u−cos 3u)/u^2 )}  = ((27)/8){6 × lim_(u→0) ((2sin 2u sin u)/u^2 )}  =((27)/8){6 ×4} = ((27)/8)×24 = 81
(2)limx0sin3x+sin6xsin9xx3=limx02sin(9x2)cos(3x2)2sin(9x2)cos(9x2)x3let3x2=u;u0,9x2=3ux=2u3=278limu02sin3ucosu2sin3ucos3uu3=278limu02sin3u(cosucos3u)u3=278{limu02sin3uu×limu0cosucos3uu2}=278{6×limu02sin2usinuu2}=278{6×4}=278×24=81
Answered by liberty last updated on 18/Jul/21
(3)lim_(x→(π/4)) ((sec^2 x−2tan x)/((x−(π/4))^2 ))    =lim_(x→(π/4)) ((tan^2 x−2tan x+1)/((x−(π/4))^2 ))   set x−(π/4)=q ; q→0 ∧ x=q+(π/4)      lim_(q→0) (((tan (q+(π/4))−1)^2 )/q^2 )  = lim_(q→0) (((((tan q+1)/(1−tan q))−1)/q))^2   = lim_(q→0) (((2tan q)/((1−tan q)q)))^2   =lim_(q→0) ((1/(1−tan q)))^2 ×lim_(q→0) (((2tan q)/q))^2   =1×(2)^2 =4
(3)limxπ4sec2x2tanx(xπ4)2=limxπ4tan2x2tanx+1(xπ4)2setxπ4=q;q0x=q+π4limq0(tan(q+π4)1)2q2=limq0(tanq+11tanq1q)2=limq0(2tanq(1tanq)q)2=limq0(11tanq)2×limq0(2tanqq)2=1×(2)2=4

Leave a Reply

Your email address will not be published. Required fields are marked *