Menu Close

1-lim-x-pi-4-sin-pi-4-x-tan-x-pi-4-2-lim-x-pi-2-pi-pi-2x-tan-x-pi-2-2-x-pi-cos-2-x-3-lim-x-0-3x-cos-3x-cos-7x-sin-2x-1-tan-2x-1-4-lim-x-0-sin-2




Question Number 111960 by john santu last updated on 05/Sep/20
(1)lim_(x→(π/4))  sin ((π/4)−x).tan (x+(π/4)) ?  (2)lim_(x→(π/2))  ((π(π−2x)tan (x−(π/2)))/(2(x−π)cos^2 x)) ?  (3)lim_(x→0)  ((3x(cos 3x−cos 7x))/( (√(sin 2x+1)) −(√(tan 2x+1)))) ?  (4)lim_(x→0)  ((sin 2x)/(3−(√(3x+9)))) ?
(1)limxπ4sin(π4x).tan(x+π4)?(2)limxπ2π(π2x)tan(xπ2)2(xπ)cos2x?(3)limx03x(cos3xcos7x)sin2x+1tan2x+1?(4)limx0sin2x33x+9?
Answered by bobhans last updated on 05/Sep/20
solution:   (1) lim_(x→(π/4))  sin (x−(π/4)).tan (x+(π/4))=      set x = (π/4)+z ; z→0     lim_(z→0)  sin z. tan (z+(π/2)) = lim_(z→0)  ((sin z)/(cot (z+(π/2))))    lim_(z→0)  ((sin z)/(tan z)) = 1  (2)lim_(x→(π/2))  ((π(π−2x) tan (x−(π/2)))/(2(x−π)cos^2 x)) =    set x = (π/2)+s , s→0      lim_(s→0)  ((π(π−π−2s).tan s)/(2(s−(π/2))cos^2 (s+(π/2)))) =     lim_(s→0)  ((−2πs.tan s)/((2s−π)sin^2 s)) = ((−2π)/(−π)) = 2  (3) lim_(x→0)  ((3x(cos 3x−cos 7x))/( (√(1+sin 2x)) −(√(1+tan 2x)))) =    lim_(x→0)  ((3x(1−((9x^2 )/2)−1+((49x^2 )/2)))/((1+((sin 2x)/2))−(1+((tan 2x)/2)))) =    lim_(x→0)  ((2×3x(20x^2 ))/(tan 2x(cos 2x−1))) = lim_(x→0)  ((60x^2 )/(1−2x^2 −1))     = −30  (4)  lim_(x→0)  ((sin 2x)/(3−(√(3x+9)))) = lim_(x→0)  ((sin 2x)/(3−(√(9(1+(x/3))))))    lim_(x→0)  ((sin 2x)/(3(1−(√(1+(x/3)))))) = lim_(x→0)  ((sin 2x)/(3(1−(1+(x/6)))))    = lim_(x→0)  ((sin 2x)/(−((x/2)))) = −4
solution:(1)limxπ4sin(xπ4).tan(x+π4)=setx=π4+z;z0limz0sinz.tan(z+π2)=limz0sinzcot(z+π2)limz0sinztanz=1(2)limxπ2π(π2x)tan(xπ2)2(xπ)cos2x=setx=π2+s,s0lims0π(ππ2s).tans2(sπ2)cos2(s+π2)=lims02πs.tans(2sπ)sin2s=2ππ=2(3)limx03x(cos3xcos7x)1+sin2x1+tan2x=limx03x(19x221+49x22)(1+sin2x2)(1+tan2x2)=limx02×3x(20x2)tan2x(cos2x1)=limx060x212x21=30(4)limx0sin2x33x+9=limx0sin2x39(1+x3)limx0sin2x3(11+x3)=limx0sin2x3(1(1+x6))=limx0sin2x(x2)=4

Leave a Reply

Your email address will not be published. Required fields are marked *