Menu Close

1-n-m-N-Prove-that-3-m-n-10ln-m-n-6-mnH-m-H-n-H-m-i-1-m-1-i-H-n-j-1-n-1-j-




Question Number 46640 by canhtoan last updated on 29/Oct/18
1≤n,m∈N. Prove that  3(m+n)+10ln (m!n!)≥6(√(mnH_m H_n )).  (H_m =Σ_(i=1) ^m (1/i), H_n =Σ_(j=1) ^n (1/j))
$$\mathrm{1}\leqslant{n},{m}\in\mathbb{N}.\:{Prove}\:{that} \\ $$$$\mathrm{3}\left({m}+{n}\right)+\mathrm{10ln}\:\left({m}!{n}!\right)\geqslant\mathrm{6}\sqrt{{mnH}_{{m}} {H}_{{n}} }. \\ $$$$\left({H}_{{m}} =\underset{{i}=\mathrm{1}} {\overset{{m}} {\sum}}\frac{\mathrm{1}}{{i}},\:{H}_{{n}} =\underset{{j}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{j}}\right) \\ $$
Commented by canhtoan last updated on 29/Oct/18
Help me
$${Help}\:{me} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *