Menu Close

1-n-n-1-3-n-n-




Question Number 100539 by Dwaipayan Shikari last updated on 27/Jun/20
(−1)^n Σ_(n=1) ^∞ (3^n /n)
$$\left(−\mathrm{1}\right)^{{n}} \underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{3}^{{n}} }{{n}} \\ $$
Commented by maths mind last updated on 27/Jun/20
Σ_(n≥1) (−1)^n (3^n /n)    this diverge
$$\underset{{n}\geqslant\mathrm{1}} {\sum}\left(−\mathrm{1}\right)^{{n}} \frac{\mathrm{3}^{{n}} }{{n}}\:\:\:\:{this}\:{diverge} \\ $$
Commented by abdomathmax last updated on 27/Jun/20
S =Σ_(n=1) ^∞  u_n   with u_n =(((−3)^n )/n)  we have  ∣(u_(n+1) /u_n )∣ =(3^(n+1) /(n+1))×(n/3^n ) =((3n)/(n+1)) →3 >1 ⇒Σ u_n diverges
$$\mathrm{S}\:=\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\mathrm{u}_{\mathrm{n}} \:\:\mathrm{with}\:\mathrm{u}_{\mathrm{n}} =\frac{\left(−\mathrm{3}\right)^{\mathrm{n}} }{\mathrm{n}}\:\:\mathrm{we}\:\mathrm{have} \\ $$$$\mid\frac{\mathrm{u}_{\mathrm{n}+\mathrm{1}} }{\mathrm{u}_{\mathrm{n}} }\mid\:=\frac{\mathrm{3}^{\mathrm{n}+\mathrm{1}} }{\mathrm{n}+\mathrm{1}}×\frac{\mathrm{n}}{\mathrm{3}^{\mathrm{n}} }\:=\frac{\mathrm{3n}}{\mathrm{n}+\mathrm{1}}\:\rightarrow\mathrm{3}\:>\mathrm{1}\:\Rightarrow\Sigma\:\mathrm{u}_{\mathrm{n}} \mathrm{diverges} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *