Menu Close

1-Prove-by-absurd-that-ln-2-ln-3-is-irrational-2-Prove-by-absurd-that-2-6-15-




Question Number 158945 by LEKOUMA last updated on 10/Nov/21
1) Prove by absurd that   ((ln 2)/(ln 3))  is irrational  2) Prove by absurd that  (√2)+(√(6 ))≤(√(15))
$$\left.\mathrm{1}\right)\:{Prove}\:{by}\:{absurd}\:{that}\: \\ $$$$\frac{\mathrm{ln}\:\mathrm{2}}{\mathrm{ln}\:\mathrm{3}}\:\:{is}\:{irrational} \\ $$$$\left.\mathrm{2}\right)\:{Prove}\:{by}\:{absurd}\:{that} \\ $$$$\sqrt{\mathrm{2}}+\sqrt{\mathrm{6}\:}\leqslant\sqrt{\mathrm{15}} \\ $$
Answered by mr W last updated on 10/Nov/21
say  (√2)+(√6)≥(√(15))  8+4(√3)≥15  4(√3)≥7  16×3≥49  48≥49 ⇒contradiction!
$${say} \\ $$$$\sqrt{\mathrm{2}}+\sqrt{\mathrm{6}}\geqslant\sqrt{\mathrm{15}} \\ $$$$\mathrm{8}+\mathrm{4}\sqrt{\mathrm{3}}\geqslant\mathrm{15} \\ $$$$\mathrm{4}\sqrt{\mathrm{3}}\geqslant\mathrm{7} \\ $$$$\mathrm{16}×\mathrm{3}\geqslant\mathrm{49} \\ $$$$\mathrm{48}\geqslant\mathrm{49}\:\Rightarrow{contradiction}! \\ $$
Commented by LEKOUMA last updated on 10/Nov/21
Thanks
$${Thanks} \\ $$
Answered by mr W last updated on 10/Nov/21
say  ((ln 2)/(ln 3))=(p/q)  ln 2^q =ln 3^p   2^q =3^p  ⇒even=odd ⇒contradiction
$${say} \\ $$$$\frac{\mathrm{ln}\:\mathrm{2}}{\mathrm{ln}\:\mathrm{3}}=\frac{{p}}{{q}} \\ $$$$\mathrm{ln}\:\mathrm{2}^{{q}} =\mathrm{ln}\:\mathrm{3}^{{p}} \\ $$$$\mathrm{2}^{{q}} =\mathrm{3}^{{p}} \:\Rightarrow{even}={odd}\:\Rightarrow{contradiction} \\ $$
Commented by LEKOUMA last updated on 10/Nov/21
Thanks
$${Thanks} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *