Menu Close

1-Prove-by-recurrence-that-for-n-28-n-11-n-2-On-subtract-the-limit-of-the-suite-n-10-n-when-n-tended-at-




Question Number 159078 by LEKOUMA last updated on 12/Nov/21
1) Prove by recurrence that   for n≥28,   n!≥11^n    2) On subtract the limit of the   suite (((n!)/(10^n ))) when n tended at +∞
$$\left.\mathrm{1}\right)\:{Prove}\:{by}\:{recurrence}\:{that}\: \\ $$$${for}\:{n}\geqslant\mathrm{28},\:\:\:{n}!\geqslant\mathrm{11}^{{n}} \: \\ $$$$\left.\mathrm{2}\right)\:{On}\:{subtract}\:{the}\:{limit}\:{of}\:{the}\: \\ $$$${suite}\:\left(\frac{{n}!}{\mathrm{10}^{{n}} }\right)\:{when}\:{n}\:{tended}\:{at}\:+\infty \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *